
Bringing computational thinking to teachers' training: a workshop
review

Juan Manuel Dodero

University of Cadiz

Spain

juanma.dodero@uca.es

Jose Miguel Mota

University of Cadiz

Spain

josemiguel.mota@uca.es

Iva n Ruiz-Rube

University of Cadiz

Spain
ivan.ruiz@uca.es

ABSTRACT

In recent years, several visual programming languages and

tools are emerging, which allow young students to easily

program applications. Particularly, the block-based language

used by Scratch has been the standard in most school initiatives

to introduce Computational thinking (CT) in courses unrelated

to computing. However, CT competences are not specifically

included in the curricula of many Higher Education degrees

that future teachers of Primary and Secondary Education have

to complete. This paper describes a workshop for teachers’

training on CT. It is based on the block-based common language

of Scratch, but focused on enhancing teachers’ skills to develop

mobile applications with a tool based on the MIT’s

AppInventor. This workshop provided some insights on the

capabilities of future teachers in the use of programming tools.

CCS CONCEPTS

• Social and professional topics → Computing education •

Human-centered computing → Ubiquitous and mobile

computing design and evaluation methods

KEYWORDS

Computational thinking; mobile programming; visual

programming languages.

1 INTRODUCTION

Computational thinking (CT) refers to a collection of

computational ideas and habits of mind that people in

computing disciplines acquire through their work in designing

programs, software, simulations, and computations performed

by machinery [1]. Although computational thinking is different

from computer programming, it includes all factors that are

essential to coding. There have been different initiatives, such

as code.org 2 , as an effort to bring computer science and

computational thinking skills to young people, both inside and

out of schools. Nonetheless, most frequent approaches to

teaching digital literacy have been based on the learning of

programming [2].

Having their roots in the 70s and 80s with the introduction

of coding for educational uses, mainly through the Logo

programming language [3], new visual programming

languages such as Alice3 , Kodu4 , Scratch5 and AppInventor6

have emerged more recently. These languages allow young

students to program applications without the need to learn the

complex syntax of the traditional programming languages [4],

thus fostering computational thinking skills by overlooking

hindrances of traditional computer programming languages.

Many schools are including in their curricula the use of

mobile devices, which are provided by the school, while others

adopt a bring-your-own-device (BYOD) solution for learning.

Anyhow teaching and learning practice in schools is radically

changing due to such technologies, so that teachers need to find

solutions to professional issues related to the use of a

2https://code.org
3http://www.alice.org
4https://www.kodugamelab.com/
5https://scratch.mit.edu/
6http://appinventor.mit.edu

Dodero Beardo, J. M., Mota, J. M., & Ruiz-Rube, I. (2017). Bringing computational thinking to teachers' training: a workshop review. In J. M. Dodero, M. S. Ibarra
Sáiz, & I. Ruiz Rube (Eds.), Fifth International Conference on Technological Ecosystems for Enhancing Multiculturality (TEEM’17) (Cádiz, Spain, October 18-20,

2017) (pp. Article 4). New York, NY, USA: ACM. doi:10.1145/3144826.3145352

mailto:Permissions@acm.org

technology they have to learn to live with [5]. However, CT

competences are not specifically included in the curricula of

many Higher Education degrees that future teachers of Primary

and Secondary Education have to complete. In the European

context, an ample overview of the most relevant literature on

coding and computational thinking with emphasis on the

relevant issues for teachers has been developed in the TACCLE

3 project [6,7]. The lack of training in CT is ample also in Spain,

where it usually requires to be addressed through self-study

and off-school training, particularly in the under-18 education

levels [8,9]. This is not different from what happens in the K-12

levels of education in many countries.

Several teacher-oriented workshops have increased

teachers’ understanding of CT and how to integrate it as part of

the curriculum [10,11,12]. In some universities, a CT training

program has been developed for future teachers based on

Scratch [13]. Actually, the block-based language used by

Scratch has been the standard in most school initiatives to

introduce CT concepts and practices in courses unrelated to

computing [14]. This work poses a slightly different approach

to design a workshop for teachers’ training on CT. It is based on

the block-based common language of Scratch, but focused on

enhancing teachers’ skills to develop mobile applications with

the MIT’s AppInventor tool [15].

The rest of this work is structured as follows: Section 2

presents the software tool developed with the aim of easing the

inclusion of diverse computing technologies in educational

contexts. Section 3 describes the experience conducted for

introducing CT concepts to the students of a Master's Degree in

Teacher Training. Finally, the conclusions and future work are

shown in Section 4.

2 THE VEDILS PLATFORM

2.1 Authoring Tool

This tool was developed with the aim of easing the inclusion

of diverse computing technologies in educational contexts.

Instead of creating a new specific tool, which may limit the

choices for some teachers who might have a relative experience

with computer programming, the VEDILS platform is based on

MIT's App Inventor, which is an easy-to-use online tool for

developing Android mobile apps. Using this tool, users without

strong programming skills are able to design and build by

themselves mobile apps, thus democratizing mobile

programming.

Figure 1: Design view of VEDILS.

This tool provides a simple drag&drop view (Fig. 1) for

designing the app’s user interface and a programming language

based on visual blocks (Blockly) to declare its behavior (Fig. 2).

Figure 2: Blocks view of VEDILS.

Unlike AppInventor, VEDILS provides a set of extensions to

develop Augmented Reality (AR) and Virtual Reality (VR)

scenarios that use diverse HMI technologies for multimodal

interactions, such as gestural and brain interfaces, as well as

the capabilities for supporting learning analytics

2.2 Measurement tool

During the development process of mobile apps, some

questions may arise: how many blocks are using the users to

define the behavior of a simple app? are they using procedures

or functions in their programs? which are the components most

used in their apps? how long do users need in average to

develop the apps? how many builds and debugs perform the

users while developing the apps? who are the most active

developers? With the aim of providing answers to these and

other questions a data analytics platform has been set up. This

solution provides a set of data schemes for multidimensional

analysis and a web dashboard (Fig. 3). All these components

have been designed using the Pentaho BI suite.

Figure 3: VEDILS main measurement dashboard.

3 WORKSHOP

3.1 Settings

A workshop for introducing CT concepts to the students of a

Master's Degree in Teacher Training at the University of Cádiz

was conducted. Students attending this course belong to

different educational areas, which range from Science and

Maths to Technology to Social Sciences to Language and

Literature to Physical Education and Visual Arts. The Master

Degree qualification is required in Spain to teach in secondary

schools. Students were introduced to CT by means of the

VEDILS authoring tool.

The workshop was held in two 4-hour sessions taking place

during two weeks. An overall of 22 students as future teachers

of different educational areas and without previous

programming knowledge were the participants. During the

first session, a series of guided exercises were conducted to

learn programming concepts. These exercises are detailed in

Table 1, Table 2, Table 3 and Table 4.

Table 1: First exercise: welcome to class

Component
s

Buttons, Labels, Text to Speech

Target Enter a name in the text box and then
voice playback that text by adding the
phrase "Welcome to class" at the
beginning

Learning introduction to events, use of getter and
setters, procedure calls, text
concatenation

Additional During the first exercise, the VEDILS
Companion tool was introduced to enable
online debugging of the application on a
mobile device.

Table 2: Second exercise: tell me.

Component
s

Buttons, Labels, Layout components,
SpeechRecognizer, Camera, Share,
PhoneCall

Target The application must recognize voice
instructions and, according to the word
dictated, response with: taking a picture
to send by message; making a phone call;
setting a screen background image.

Learning Use of conditional control blocks,
response to events

Table 3: Third exercise: Switching between screens.

Components Buttons, Labels, Layout components,
Screens

Target Create multiple screens and switch
between them using buttons

Learning Grouping of contents by screens,
importance of the initial screen defined by
default.

Table 4: Fourth exercise: Story with augmented reality.

Component
s

Buttons, Labels, Sound, ARCamera,
ARMarkerTracker, AR3DModelAsset

Target Create a story using AR components. Two
marks of AR have to be associated with 3D
images and another with a 2D image,
which will serve as background and
associated with a sound

Learning Grouping of contents by screens,
importance of the initial screen defined by
default, AR concepts, and how AR can be
implemented in educational content to
support explanations.

At the end of the session, students were asked to come up

with ideas for an application that they had to create within their

area of knowledge. The second session began by designing on

paper how the screens, their content and the flow between

them should be. Each student deepened in the learning of the

tools that were more necessary for their application area,

always with the teacher’s support, to complete their

applications before the end of the class.

As a final objective of the course, students had to develop

and deliver an application, different from the one created in

class, where they would apply the concepts learned. This has

been the application evaluated in this paper.

Students had no prior programming skills and were still

able to follow the course without major problems. The only

issues encountered were due to the mobile devices where the

applications were tested, sometimes because of a lack of

memory and others due to the Android operating system

version. Initially some students did not want to free up space

on their devices to install the applications, but when they

checked the possibilities the programming environment

provided, they did not hesitate to delete pictures and messages

to do it. Thus, the lack of planning is a common problem when

developing the most complex exercises, because students

started to program the applications directly without having

designed it previously.

3.2 Results

A review of the apps developed by the students is presented

in this section, along with a set of metrics related to the

complexity and the variety of the components and

programming language instructions used in the apps.

Most applications had the following structure: an initial

screen asking for the user's name, which was used on the other

screens to customize the application; a presentation of

concepts on the educational area where the application was

developed; a number of evaluation exercises of the concepts

learned (e.g. applications for reinforcing foreign language

learning used components such as speech recognition); and a

farewell screen where the exercises scores were displayed.

The work exceeded the initial expectations of students, as

they did not expect to be able to develop educational content

for mobile devices. The future teachers discovered the

possibilities offered by developing applications to teach their

future students in primary or secondary schools, as well as the

possibilities provided by mobile devices that are not being fully

exploited as a curricular subject.

Among the works, two of them especially stand out. One of

them consisted in learning about genes to continue with a

series of questions (see Fig. 4).

The second remarkable application used AR capabilities for

learning about perspectives, using AR marks associated with

3D models that the student designed (see Fig. 5).

Figure 4: App for learning about genes.

Figure 5: Augmented reality application to learn about
perspectives.

Some basic statistics (see Table 5) were computed by using

the VEDILS analytics tool, such as the time needed to develop

the apps; the number of screens, components and blocks used

and the number of build and debug processes launched

through the VEDILS environment.

Table 5: Basic statistics of developed apps.

Metric Average Std dev
Duration 4:19:30 3:05:53
Screens 7 4.57
Components 63.76 43.83
Blocks 157.76 157.02
Builds 2.86 4.88
Debugs 19.71 16.19

Fig. 6 depicts the diversity of both visual and non-visual

components used by students to design the mobile

applications. User interface elements, such as labels, buttons,

textboxes and images, and layout containers (vertical and

horizontal) are mostly used components in the developed

mobile apps. To a lesser extent, multimedia elements, such as

the TextToSpeech component, are also frequently used.

Figure 6: Distribution of the components used in the
developed apps.

Figure 7: Distribution of number of blocks.

The number of blocks used by students to develop their

apps were computed and broken down into the following

categories:

● Component: Amount of received events, invoked

functions or properties accessed/modified on the

app’s components.

● Control: Amount of flow control instructions used.

● Lists: Number of lists created and operations applied.

● Logic: Amount of boolean values and logic operations.

● Math: Amount of numerical values and math

operations.

● Text: Amount of literal values and string operations.

● Procedures: Amount of definitions and invocations to

procedures.

● Variables: Amount of declarations and use of

variables.

Fig. 7 depicts the range of blocks used to define the behavior

of the apps. Most of those blocks correspond with event

handlers and read/write access to components’ properties.

Then, some control flow blocks, such as the conditional if and

the openAnotherScreen; logic blocks, such as boolean

definitions and comparisons; and blocks for defining text

literals are also quite often used. It is worthy to mention the

scarce use of loop instructions and procedures.

3.3 Discussion

The previous results have provided us with a number of

insights about the programming habits and CT principles

followed by future teachers as novice developers, namely

decomposition, pattern matching, abstraction, and algorithmic

principles.

3.3.1 Application appearance. The number of components to

arrange items on screen indicates the importance that students

give to the appearance of applications. This was one of the

topics most asked by the students, as they wanted to give an

appearance to their applications similar to the Google’s

Material Design style, something that was not possible in the

mobile app development environment currently used, based on

App Inventor. In addition, App Inventor does not allow to copy

and paste controls between screens; only code can be copied,

so if someone wants the screens to have a common look and

feel, they must do it manually for each screen and item.

Another issue frequently encountered is the lack of a

previous design of the application. Students were directly to

the design and coding in the authoring tool. This caused a lot of

changes as the components were inserted, after realizing that

it was not the best arrangement. It is therefore important to

strengthen the generation of mockups either on paper or by

using specific wireframing tools.

3.3.2 Repeated code. The analysis also highlighted the lack of

procedure blocks, that groups a sequence of blocks together,

thus avoiding code repetition. The students did not fully

understand the functionality of these procedure blocks, and

usually grouped all the instructions into a single main block.

App Inventor does not provide a step-by-step processing

facility for debugging, neither provides a representation of the

event queue and a programmer-controlled run-time clock, so

users could not see in slow motion how events work. Therefore,

students preferred to copy and paste code pieces throughout

the program for a better tracking of program execution.

3.3.3 Augmented reality. AR is a technology that, although

well known to the students thanks to games, was mostly

unknown to them from the point of view of the development of

educational resources. Despite that fact, AR was actually

applied in several projects. In this vein, we can imagine that

other technologies provided by VEDILS that could not be tested

in the workshop, such as VR and human-machine interaction

with devices, can be within reach of future teachers as

developers.

3.3.4 Used elements. Almost all apps contained conditional

statements, but conditional loops were rarely used. The list

items, which facilitate programming when you want to make

batteries of questions, were not used much either, as it has been

realized in many applications. We envision that the experience

that students will gain from learning based on all the material

available on the Web and the development of new applications

will lead them to introduce new programming concepts.

4 CONCLUSIONS
In this paper, we have presented the results of a workshop

with future teachers as students of a Master’s degree. The

students, belonging to different educational branches, have

been able to test how VEDILS, an extension of App Inventor,

enables them to develop educational contents for their future

students, without having to be concerned about the

programming and coding issues as much as about the

educational concepts they want to teach. The apps developed

by the students showed that some technologies included in

VEDILS, such as augmented reality, can be within everyone's

reach. As an ongoing work, this technology is being also tested

with professionals of other disciplines, such as health and

wellbeing.

The possibility of solving real problems that people from all

other disciplines have to face when they become teachers has

attracted many of these students to continue working on

programming applications. Some of them developed mobile

device applications as part of their final Master’s thesis and

obtained very good qualifications.

ACKNOWLEDGMENTS
This research has been partially funded by the Spanish

Ministry of Economy and Competitiveness through the

EmPhasys project grant (ref. RTC-2016-5095-1).

REFERENCES
[1] Tedre, M., & Denning, P. J. (2016). The long quest for computational

thinking. In Proc. of the 16th Koli Calling International Conference on
Computing Education Research, Koli, Finland, pp. 120-129.

[2] García-Peñalvo, F. J. (2016). What Computational Thinking Is. Journal of
Information Technology Research, 9(3), 5-8.

[3] Papert, S., & Solomon, C. (1971). Twenty things to do with a computer,
Report No. AIM-248, MIT, CSAIL

[4] Moreno-León, J., Robles, G., & Román-González, M. (2015). Dr. Scratch:
Automatic analysis of scratch projects to assess and foster
computational thinking. RED. Revista de Educación a Distancia, 46(10).

[5] Leask, M. & Pachler, N. (2014). Learning to Teach Using ICT in the
Secondary School. A companion to school experience, 3rd ed.,
Routledge.

[6] García-Peñalvo, F. J. (2016). A brief introduction to TACCLE 3 – Coding
European Project. In F. J. García-Peñalvo & J. A. Mendes (Eds.), Proc. of
16th Int. Symposium on Computers in Education (SIIE), Sep 13-15,
Salamanca, Spain, pp. 1-4.

[7] García-Peñalvo, F. J., Rees, A. M., Hughes, J., Jormanainen, I., Toivonen, T.,
& Vermeersch, J. (2016). A survey of resources for introducing coding
into schools. In F. J. García-Peñalvo (Ed.), Proc. of the 4th Int. Conf. on
Technological Ecosystems for Enhancing Multiculturality (TEEM), Nov
2-4, Salamanca, Spain, pp. 19-26.

[8] García-Peñalvo, F. J., Llorens Largo, F., Molero Prieto, X., & Vendrell
Vidal, E. (2017). Introducción a la sección especial: Educación en
Informática sub 18. ReVisión, 10(2), pp. 13-18.

[9] Lye, S. Y. & Koh, J. H. L. (2014). Review on teaching and learning of
computational thinking through programming: What is next for K-12?
Computers in Human Behavior, 41(12), pp. 51-61.

[10] Blum, L., & Cortina, T. J. (2007). CS4HS: An outreach program for high
school CS teachers. SIGCSE Bulletin, 39(1), pp. 19-23.

[11] Bort, H., & Brylow, D. (2013). CS4Impact: measuring computational
thinking concepts present in CS4HS participant lesson plans, Proc. of the
44th ACM SIGCSE, Mar 6-9, Denver, Colorado, USA, pp. 427-432.

[12] Liu, J., Lin, C.-H., Hasson, E. P., & Barnett, Z. D. (2011). Introducing
computer science to K-12 through a summer computing workshop for
teachers, Proc. of the 42nd ACM SIGCSE, Mar 9-12, 2011, Dallas, TX, USA,
pp. 389-394.

[13] Bean, N., Weese, J., Feldhausen, R., & Bell, R. S. (2015). Starting from
Scratch Developing a Pre-Service Teacher Training Program in
Computational Thinking. IEEE FIE Conference, Oct 21-24, Camino Real
El Paso, El Paso, TX, USA, pp. 1307-1314.

[14] Moreno-León, J. & Robles, G. (2016) Code to learn with Scratch? A
systematic literature review. Proc. of EDUCON. Apr 10-13, Abu Dhabi,
UAE, pp. 150-156.

[15] Wolber. M. (2010). A Blocks Language for Mobile Phones: App Inventor
for Android, in E. Canessa & M. Sennaro (Eds.) m-Science. Sensing,
Computing and Dissemination, ICTP, pp. 99-128

	4 CONCLUSIONS
	ACKNOWLEDGMENTS

