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ABSTRACT
University employment and, specifically, employability has gained relevance since
research in these fields can lead to improvement in the quality of life of individual
citizens. However, empirical research is still insufficient to make significant decisions,
and relying on powerful tools to explore data and reach insights on these fields
is paramount. Information dashboards play a key role in analyzing and visually
exploring data about a specific topic or domain, but end users can present several
necessities that differ from each other, regarding the displayed information itself,
design features and even functionalities. By applying a domain engineering approach
(within the software product line paradigm), it is possible to produce customized
dashboards to fit into particular requirements, by the identification of commonalities
and singularities of every product that could be part of the product line. Software
product lines increase productivity, maintainability and traceability regarding the
evolution of the requirements, among other benefits. To validate this approach, a
case study of its application in the context of the Spanish Observatory for University
Employability and Employment system has been developed, where users (Spanish
universities and administrators) can control their own dashboards to reach insights
about the employability of their graduates. These dashboards have been automatically
generated through a domain specific language, which provides the syntax to specify the
requirements of each user. The domain language fuels a template-based code generator,
allowing the generation of the dashboards’ source code. Applying domain engineering
to the dashboards’ domain improves the development and maintainability of these
complex software products given the variety of requirements that users might have
regarding their graphical interfaces.
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INTRODUCTION
The concept of employability has increasingly gained relevance over the last decades. There
is a reason: knowingwhich factors increase the possibility to obtain a job or to performbetter
in current job positions could be decisive to improve individual and collective life quality.

However, this concept is still far away from having a straightforward definition (Chadha
& Toner, 2017). As the literature suggests, employability can be seen as a capability to
gain employment or as a set of skills and knowledge required to perform effectively
in the workplace, among other definitions (Universities UK & Confederation of British
Industry, 2009; Hillage & Pollard, 1998; Yorke, 2006). This lack of consensus when defining
employability makes the research in this field a complicated task, given the fact that the
definition of its factors depends on the perspective used to evaluate it, as well as the
socioeconomic context in which employability and employment studies are framed. For
these reasons, nowadays research on employability asks for an exploratory approach, to
build stronger theoretical foundations.

Researching on employability has many potential benefits, aiming not only at knowing
the variables that affect the capability to gain employment and have a successful work career,
but also to exploit this knowledge to help policymakers and institutions with their missions.
This knowledge can contribute to the creation of greater policies, focusing on the detected
factors to enhance people’s chances to obtain better employment. Specifically, educational
institutions like universities could benefit from this knowledge. These institutions play a
vital role regarding the employability of individuals (García-Peñalvo, 2016), as they are in
charge of transmitting knowledge and a series of skills to their students. By promoting
the most relevant skills and capabilities that affect employability, it could be possible to
increase the alignment of education with the labor market.

However, generating knowledge in such a study field is not a trivial task. As it has
been introduced, there could be several variables involved in the research of students’
employment and employability, so it is necessary to collect significant data volumes to be
able to reach valuable insights. In addition to data collection, performing data analysis
(Albright, Winston & Zappe, 2010) is required to be able to reach useful insights. It is
worth noting that analyzing employability data to identify and understand its factors could
become a cornerstone in decision-making processes within educational institutions.

Nevertheless, even after performing data analysis, identifying patterns and indicators
derived from the analysis outcomes remains a complex challenge. That is why it is crucial
to assist decision-makers with powerful tools that allow reaching insights about the domain
of the problem, to support decisions with complete and quality information (especially in
the academic context, where these processes might have a series of social implications),
that is, information and knowledge that has been extracted through visual analysis.

Information dashboards are one of the most commonly used software products for
visual data analysis and knowledge extraction (Few, 2006; Sarikaya et al., 2018). In a
domain like employability, these tools can support exploratory studies through a set of
graphical and interactive resources, allowing users to envision data more understandably
(Tufte & Graves-Morris, 2014) and identify relevant relations, indicators or patterns among
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large sets of data. It is essential to bear in mind that information dashboards are not just
a set of aesthetic graphs and visualizations; they have to effectively transmit information
to answer the questions of the users regarding the target domain. Moreover, this is not a
trivial job, because of two main reasons: data and users themselves.

On the one hand, users do not have a set of standard and static requirements; they could
demand different features or design attributes given their specific goals or needs. On the
other hand, data is continuously increasing and evolving nowadays, so it is foreseeable that
new information requirements will arise in time. Returning to the employability subject,
information requirements in this domain might change in many different ways as this
concept could demand new kind of variables or larger amounts of data to explore emerging
dimensions or to perform more in-depth analyses.

For these reasons, information dashboards not only need to be useful concerning
functionality but also be customizable to adapt to specific user requirements. Also, they
should be flexible and scalable regarding its data sources and structures, making the
development and maintenance of information dashboards even more complicated. Of
course, these issues could be addressed by developing particular dashboards for each
involved user to achieve every specific goal, but clearly, this solution would be time-
consuming and would require a lot of resources during the development and maintenance
phases. Also, scalability would be almost impossible, as new users or changes in the
requirements would necessarily imply more resources.

There are, nevertheless, a series of strategies to deal with these challenges. Specifically,
software engineering paradigms like software product lines (Clements & Northrop,
2002; Gomaa, 2004; Pohl, Böckle & Van der Linden, 2005) provide powerful theoretical
frameworks to address flexibility, scalability and customization in software products that
share sets of features within a common domain. Through the analysis of commonalities and
variability points in the product domain, it would be possible to reduce the development
and maintenance effort of building tailor-made solutions. This paradigm is potentially
applicable to dashboards since these software products could be factored into sets of
configurable components with configurable features. This paper describes the application
of the SPLmethodology to the dashboards’ domain through the study of their characteristics
and the definition of a DSL to manage the product derivation automatically. The main
focus of this research is to test the potential usefulness and feasibility of this approach
to manage fine-grained features that can be scattered through different code assets, and
consequently, to provide a base method for generating personalized dashboard solutions
to fit concrete user requirements.

The remainder of this work is structured as follows. Background discusses the
background of the problemof generating customized dashboards as well as their application
to the employment and employability domain. Context presents the application context
and the motivation behind this pilot framework to generate dashboards to support visual
analysis on university employment and employability data (framed within the Spanish
Observatory for University Employability and Employment studies. Materials andMethods
describes the techniques used for the development of an initial approach to a generative
dashboard framework. Finally, the Results section exhibits the outcomes of this research to
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conclude with the discussion of the developed SPL and the conclusions derived from these
results.

BACKGROUND
The main idea behind software product lines (SPLs) is that the final products can be
derived from a set of configurable core assets, allowing their adaptation to fit specific
requirements. These core assets are developed during the domain engineering phase, in
which commonality and variability of the target product domain are identified to build a
common base of components. Core assets are developed with variability points in which
specific functionalities could be injected to obtain new products. Functionalities in SPLs
are seen as features; the combination of the defined features within the scope of the
line (generally following a feature model (Kang et al., 1990) allow stakeholders to build
personalized products by reusing and assembling software components.

The SPL paradigm has been applied to a variety of domains: Mobile applications
(Marinho et al., 2010; Nascimento, 2008; Quinton et al., 2011); Applications for visualizing
population statistics (Freeman, Batory & Lavender, 2008); Sensor data visualizations (Logre
et al., 2014); Variable content documents (Gómez et al., 2014); or e-Learning systems (Ezzat
Labib Awad, 2017).

These practical applications have proved the benefits of this paradigm.However, features
usually refer to the software’s logic, deflecting attention to the presentation layer. The idea
of generating customized dashboards can be seen as a specific case of graphical user
interfaces (GUI) automatic generation within SPLs. User interfaces require additional
work regarding their implementation; they not only need to be functional but also usable
to allow users to complete their tasks efficiently and achieve their goals. That is why the
design of user interfaces is present through the whole development process, being time-
and resource-consuming job.

Automation regarding GUI generation in software product lines has already been
faced in several works. Generally, there is a lack of usability on the generated products
that can be addressed by manually designing every product GUI. But this approach is
highly inefficient in the SPL paradigm context since all the development time saved
could be lost by introducing a manual task (Hauptmann et al., 2010). Integration of the
GUI design process and the SPL paradigm is required to leverage the benefits of the two
approaches (Pleuss, Botterweck & Dhungana, 2010). There is, as Pleuss et al. (2012a); Pleuss
et al. (2012b) pointed out, a dilemma between automation and usability. To address this
challenge, they utilized Model-Based UI Development (MBUID) methods to separate the
functionality and the appearance of the GUI (Pleuss, Botterweck & Dhungana, 2010).

On the other hand, Gabillon, Biri & Otjacques (2015) demonstrated the possibility of
creating adaptive user interfaces through the Dynamic SPL (DSPL) paradigm and MBUID
models by developing a context-aware data visualization tool that can be adapted during
runtime.

DSPLs provide a useful paradigm for adapting code at run-time, obtaining adaptive
GUIs. Kramer et al. (2013) proposed document-oriented GUIs with run-time variations
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through XML documents (Kramer et al., 2013). This context-adaptable feature has also
been achieved by Sboui, Ayed & Alimi (2018), by developing amobile application that is also
runtime adaptable through MBUID models and reusable artifacts. In this particular case,
the code generation is based on eXtensible Stylesheet Language Transformations (XSLT)
and XML files (Sboui, Ayed & Alimi, 2018). These works shows not only the viability of
GUI generation in the SPL/DSPL paradigms context but also their valuable benefits.

It seems evident that GUI customization requires fine-grained features to achieve the
desired usability and design attributes. Fine-grained features mostly require annotative
approaches regarding their implementation, given their specialization. Annotative
approaches can address this issue because annotations can be arbitrarily specified at
different source code fragments (Kästner & Apel, 2008; Kästner, Apel & Kuhlemann, 2008),
and provide a framework for fine-grained automated software composition through feature
structure trees (Apel, Kastner & Lengauer, 2009).

There are different approaches to manage the implementation of variability at a fine-
grained level (Gacek & Anastasopoules, 2001). Especially, frame- and template-based
approaches provide valuable solutions to address this fine-grained level of variability,
allowing the injection of particular fragments of code at any point of the base source
code. Frame-based languages, like XML-based Variant Configuration Language (XVCL)
(Jarzabek et al., 2003), provide a syntax to combine and insert fragments of code through the
definition of frames, allowing the separation of concerns regarding the SPL implementation
(Zhang, Jarzabek & Swe, 2001). Templating can also achieve valuable results; templating
libraries such as Jinja2 (Ronacher, 2008) provide powerful functionalities to annotate the
source code independently of the target programming language (Clark, 2018; Ridge, Gaspar
& Ude, 2017).

The generation of GUI within the context of a product family is still a convoluted
field, although the previous work has enlightened the path to improve and leverage the
automation and generation of these complex software elements. The complexity mainly
comes from human factors and the vast variety of requirements regarding user interfaces.

This work aims to present an application of the SPL paradigm, in this case on the
dashboards’ domain, considering the fine-grained nature of their features and the necessity
of customizing its interaction methods and visual appearance.

CONTEXT
The application of this work is framed within The Spanish Observatory for University
Employment and Employability. The following subsections describe this organization’s
mission and the motivation to generate personalized dashboards to explore its data.

The observatory for university employment and employability
The Observatory for University Employment and Employability (also known as OEEU,
its Spanish acronym, http://oeeu.org) is an organization with the vision of becoming an
information reference for understanding and exploiting knowledge about employment and
employability of students from Spanish universities. To do so, this network of researchers
and technicians conduct studies about these fields in the academic context (Michavila et
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al., 2018a; Michavila et al., 2016; Michavila et al., 2018b), through a data-driven approach
to recollect, analyze, visualize and disseminate employment and employability data of
graduates from Spanish universities.

Firstly, in the data collection phase, universities provide their administrative records and,
once this phase is completed, their students answer a questionnaire about different aspects
of their education and work career. This process leaves the Observatory with a significant
set of variables from the students’ sample. For instance, in the 2015 study edition, more
than 500 variables were gathered from 13,006 bachelor students. Moreover, in the 2017
study edition, 376 variables were gathered from 6,738 master degree students.

The volume of the data collected makes the presentation of the study results to the
Observatory ecosystem’s users a challenge, as the latter may have different requirements
and necessities regarding the studies’ data. For these reasons, an approach based on
domain engineering fits the OEEU’s needs, allowing an efficient generation of customized
dashboards that meet different requirements.

Motivation
As it has been introduced, employment and employability are complex study fields that
mainly ask for exploratory analysis, given its relatively initial status of research. In the
context of the Spanish Observatory for University Employment and Employability, where
a vast set of variables from significant quantities of students are recollected, it is crucial
to rely on exploratory visualizations that allow users and administrators to identify at a
glance unusual patterns or important data points by enhancing the understanding of the
presented information (Card, 1999).

In contrast with explanatory visualizations, in which the primary purpose is to tell a
story through data, exploratory tools aim to facilitate users to pose more questions as data
is being explored. In essence, explanatory analyses start from a question and use data to
answer it. Exploratory analysis, on the other hand, uses data to detect new avenues of
research. For instance, when a user does not have a clear question about the data, it will
use exploratory research to find patterns or relations among variables. This same user
could employ the acquired knowledge to explain the insights reached through previous
explorations using an explanatory visualization.

Exploratory visualizations rely intensely on interaction to provide their functionality
and to allow users to drill-down datasets, being able to discover new aspects of the domain
by directly communicating with the graphical interface. However, an interaction can take
many forms, and there is not a single solution to obtain usable and intuitive interfaces valid
for every user.

For instance, some users could find useful a visible control panel to manage data if they
are going to apply filters, aggregations and so on intensively. On the other hand, other
users can demand in-place interaction if they give more importance to having more space
for the visualizations (instead of having a permanent control panel consuming screen
space). Another example is that users that speak a left-to-right (LTR) or a right-to-left
(RTL) language would demand different layouts for the same task, according to their
sociodemographic or cultural context (Almakky, Sahandi & Taylor, 2015;Marcus & Gould,
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2000). Also, visualization novices could require task-oriented dashboards to support their
visual analysis, since their past experience with this kind of tools is a relevant factor when
interacting with a system (Elias & Bezerianos, 2011).

Once patterns, relations between variables and interesting dimensions have been
identified through the exploration of data, even the exploratory nature of a dashboard can
change for amore explanatory purpose to present the results understandably and strikingly.

For all these reasons dashboards, their components, their interaction, and even their
primary purpose need advanced configuration and customization to fit into different
contexts and requirements. Moreover, as it has been aforementioned, SPLs provide a
potential solution to efficiently address this customization since visual components and
interactionmethods could be treated as features of the product line, decreasing the resources
needed during the development and maintenance of dashboards.

MATERIALS & METHODS
This section presents the materials and techniques used during the development of this
first approach to a framework for generating dashboards to explore employment- and
employability-related variables.

Meta-model
The problem to address requires abstract modelling to capture basic features within the
dashboards’ domain. To do so, a meta-model is proposed. Meta-models are a crucial
artefact in model-driven engineering and model-driven architectures (Kleppe, Warmer &
Bast, 2003), as they allow to define a high-level view of the domain without depending
on specific technologies. Therefore, meta-models should remain as simple as possible to
eventually, through a series of mappings and transformations, obtain concrete models
(Álvarez, Evans & Sammut, 2001).

For this generic dashboards’ domain, the meta-model found in Fig. 1 is proposed. First
of all, a specific user could handle a dashboard. This dashboard could be composed of one
or more pages, being these last composed, in turn, by one or more containers. A container
could be seen as a row or a column, and it can recursively contain more containers. The
container recursion ends with a component, which is any graphic element that can be used
in a dashboard. The recursion mentioned above allows the arrangement of any layout by
the recurrent combination of rows and columns.

This meta-model eases the vision of the dashboards’ domain, and it also allows to
identify the common base of any dashboard.

Feature model
The meta-model gives a high-level vision of the dashboards’ domain. However, it does not
capture concrete features. That is why software product lines rely on feature models (Kang
et al., 1990) to identify common and variable assets.

Feature models not only serve as a documentation element but also as an important
artifact within the development process. The implementation of the core assets and the
materialization of variability points on the code must be guided by the previously defined
feature model.
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Figure 1 Dashboard meta-model. The dashboard meta-model allows a high level view of the target do-
main.

Full-size DOI: 10.7717/peerjcs.203/fig-1

In this domain, the featuremodel will capture the dashboards’ visualization components,
aswell as individual features and restrictions of each visualization. The hierarchical structure
of the feature model allows to define high-level characteristics and refine them through
the tree structure until reaching the lower-level features (i.e., fine-grained features). This
structure makes the scalability of features easier, since adding new features involves the
addition of new nodes to the feature tree uniquely.

For the Observatory’s dashboards, three main configurable visual components (features)
have been defined: a scatter diagram, a chord diagram and a heat map. These visualizations
address the requirements of the Observatory’s data but can be reused for other data
domains. Also, it is possible to specify a global filter that affects the data of all components
previously defined. These high-level features of the dashboards’ product line are presented
in Fig. 2.

A detailed view of the scatter diagram feature can be seen in Fig. 3. It has a set of
subsequent features, either mandatory, optional or alternative. One mandatory feature
is the base logic of the scatter diagram (i.e., the component layout construction and its
primary logic). Another mandatory feature is the initial data that the diagram will be
showing on different dimensions since it must be specified. Among the optional features,
it is possible to determine whether a tooltip will show up when hovering on data points if
a set of controls will support the data exploration, or the capacity to zoom or export the
diagram. Also, a title for the visualization can be included.
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Figure 2 High-level view of the feature diagram. This feature diagram shows high-level components
that could compose the dashboard.

Full-size DOI: 10.7717/peerjcs.203/fig-2

Figure 3 High-level view of the scatter diagram component’s features. This snippet of the feature
model shows the possible features regarding the scatter diagram component.

Full-size DOI: 10.7717/peerjcs.203/fig-3

For the sake of simplicity, some of the lower-level features have been omitted in Fig.
3. For instance, the bar and panel control features have subsequent features. The detailed
features for a panel type control are shown in Fig. 4 to provide an example. A control panel
will rely on its underlying logic, and it can count on different optional features, like data
selectors to dynamically change the visualization’s presented data; in case of the X and Y
axes, these selectors could be locatedwithin the control panel space or in-place controls (i.e.,
situated near the scatter diagram axes). Other possible features involve having an overview
that shows a detailed view of a data point when hovering, data filters, among others.

The feature diagram provides a high-level and organized overview of the SPL, improving
the organization of the source code and development tasks.

Domain-specific language
There is, however, a necessity of connecting the previous models to the dashboards’ source
code to be generated (Voelter & Visser, 2011). A Domain-Specific Language (DSL) has
been designed to accomplish this connection. This DSL is based on the identified domain’s
features, by structuring them with XML technology (Bray et al., 1997) and by validating
the model restrictions with an XML schema (Fallside, 2000). XML technology provides
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Figure 4 High-level view of a component’s panel subsequent features. This part of the feature diagram
shows lower-level features regarding the components’ control panel.

Full-size DOI: 10.7717/peerjcs.203/fig-4

Figure 5 Snippet of the DSL schema. It is possible to specify the dashboard layout and its elements (i.e.,
data filters, components, etc.).

Full-size DOI: 10.7717/peerjcs.203/fig-5

a readable and easy-to-parse manner for injecting functionalities or requirements in a
system, fostering flexibility since these rules are not directly defined (or hard-coded) in the
source code.

The following examples describe the DSL developed for this work. Following the
meta-model, every dashboard will be composed by one or more pages, each page with its
configuration (i.e., layout and components, as seen in Fig. 5), and each page component
with its setting (given the feature model, as seen in Fig. 6).

Data resources of each visual component are represented by the XSD generic type
‘‘anyType’’, to decouple the data structure and format from the presentation, and also to
open up the possibility of injecting dynamic data sources without affecting the DSL syntax.
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Figure 6 DSL schema regarding the specification of the dashboard components. It is possible to see the
link between the feature model elements and the XML schema elements (e.g., the components that could
compose the dashboard).

Full-size DOI: 10.7717/peerjcs.203/fig-6

Figure 7 DSL schema regarding the specification of the scatter diagram component. This part of the
DSL represents the available features for the scatter diagram component.

Full-size DOI: 10.7717/peerjcs.203/fig-7

In Figs. 6 and 7 the resemblance of the XML schema structure with the feature model
can be appreciated. The hierarchical nature of XMLmatches with the hierarchical structure
of feature diagrams. This resemblance allows better traceability of the features involved in
the product line, because the syntax of the DSL is obtained from the feature model, thus
providing a computer-understandable specification of the SPL, necessary to process the
requirements and to automate the dashboard generation. In this current approach, the
dashboard’s feature model serves as documentation, but, as it will be discussed, it would
be extremely valuable to create a programmatic link between this model and the DSL
specification, in order to propagate and reflecting any feature model change automatically
in the DSL, improving maintainability.

Finally, Fig. 8 shows how the layout of the dashboard is specified in terms of rows,
columns and components (following, again, the meta-model previously presented). The
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Figure 8 XML type for specifying the dashboard’s layout. The dashboard layout (previously modeled
through the dashboard meta-model) is specified by creating a custom type.

Full-size DOI: 10.7717/peerjcs.203/fig-8

DSL combines both the meta-model and feature model designs to obtain a specific syntax
to configure all the aspects regarding the generation of final products.

The whole schema for the DSL can be consulted at the following GitHub repository
https://github.com/AndVazquez/dashboard-spl-assets (Vázquez-Ingelmo, 2018).

Code generator
To put together all the developed assets and concepts, a code generator has been developed
to manage the generation of functional dashboards. The generator interprets the DSL (i.e.,
XML configuration files) and selects the appropriate template (i.e., core assets of the SPL)
to configure them by injecting the chosen features, obtaining the dashboards’ final source
code. The code templates and XML configuration files are managed by the developers
following the elicited user requirements.

The inputs and outputs of the code generator can be seen in Fig. 9.

Code templates
The next challenge regarding the implementation of this SPL involves the choice of
the techniques for materializing the product line’s variability points. In this case,
personalization is focused on the visual elements of the system’s presentation layer,
which require fine-grained variability (Kästner & Apel, 2008). Coarse-grained variability
involves the addition and removal of full components, which is also useful for this approach
(users may prefer a scatter diagram over a chord diagram to achieve their goals, removing
the last from the dashboard). However, visual components themselves (referring to the
elements that compose them) also require high variability to fit into different requirements,
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Figure 9 Code generator inputs and outputs. The code generator is fed with the code templates and the
XML configuration files to provide the final source code of the dashboard.

Full-size DOI: 10.7717/peerjcs.203/fig-9

so fine-grained variability needs to be accomplished. There exist different approaches to
implement fine-grained software composition, as in the case of FeatureHouse (Apel,
Kastner & Lengauer, 2009), which uses superimposition and feature structure trees (FSTs),
however, not everymethod supports the currently required granularity, which involves even
statement-level variability. Fine granularity often prohibits superimposition approaches
(Apel, Kästner & Lengauer, 2013).

The mechanism chosen to reach the desired feature granularity is based on template
engines. Template engines allow to tag sections and parameterize units of source code to
inject concrete values later and obtain complete source files. This mechanism accomplishes
the necessity of materializing the variable features of a tangible product of the line.

Jinja2 (Ronacher, 2008) was selected as the engine for developing the core assets of this
SPL. This template engine allows the definition of custom tags, filters and even macros,
being the last one of the essential features to organize the core assets. As described in
(Kästner & Apel, 2008), fine-grained approaches can make the source code tedious to
read and maintain. By declaring every variant feature on different macros to compose
them subsequently, it is possible to achieve high cohesion and loose coupling on the
SPL feature implementation process, improving reusability and source code organization
by grouping the different functionalities by its parent feature. There was no need to
implement extensions of the Jinja2 implementation and mechanisms, as its current syntax
was sufficient for the annotative approach followed.
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Figure 10 Workflow of the code generation process. A simplified view of the code generator behavior.
Full-size DOI: 10.7717/peerjcs.203/fig-10

A diagram of the detailed workflow for generating the source code can be
seen in Fig. 10. The code templates for this case study can be also consulted at
https://github.com/AndVazquez/dashboard-spl-assets (Vázquez-Ingelmo, 2018).

RESULTS
Generated dashboards
As it has been already introduced, the Observatory collects important datasets to research
the employability and employment of graduates from Spanish universities. Relying on
a customizable exploratory tool would increase the chances of discovering interesting
patterns or relations within these complex fields. The dashboards of this case study have a
series of particular requirements due to the data domain and the specific characteristics of
the Observatory studies. For instance, the developed data visualizations exploit different
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Figure 11 Results derived from the first configuration. Through this configuration is possible to apply
different filters simultaneously to each scatter diagrams to observe how patterns evolve.

Full-size DOI: 10.7717/peerjcs.203/fig-11

dimensions of the Observatory’s collected variables. Also, the generated Observatory’s
dashboards needed to be connected to the organization’s GraphQL API (Facebook, 2016)
that allow users to retrieve data statistics on demand (Vázquez-Ingelmo, Cruz-Benito
& García-Peñalvo, 2017; Vázquez-Ingelmo, García-Peñalvo & Therón, 2018a; Vázquez-
Ingelmo, García-Peñalvo & Therón, 2018b; Vázquez-Ingelmo, García-Peñalvo & Therón,
2018c), decoupling the data resources from the visual components’ logic.

In this section, the results derived from the application of the presented dashboard
product line within the university employment and employability domain are described.
By tuning SPL through particular configurations, it is possible to obtain tailored solutions
for different requirements and tasks.

Configuration #1. Comparison of different values is one of the most relevant tasks
regarding the exploration of university employability and employment data. These
comparisons could enlighten which factors affect employability and employment to a
greater or lesser extent, leading to the possibility of conducting deeper analyses.

For example, by configuring a dashboard with two scatter diagrams side by side, it is
possible to apply different filters to each one and observe how data patterns evolve (Fig. 11).
Also, adding the global reference feature to both diagrams helps to make comparisons by
adding a reference line marking the unfiltered and disaggregated values.

It is possible to appreciate, for example, that men graduates are more optimistic when
commenting opinions about their future wages and the possibility of developing a working
career in Spain (Michavila et al., 2018b). However, these diagrams also allow seeing at a
glance that Arts and Humanities and Sciences graduates are more pessimistic about their
future than their counterparts in other branches of knowledge, which are more clustered.
For instance, only 40% of Sciences women graduates think that they could have a working
career in Spain within five years.
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Figure 12 Results derived from the second configuration. The scatter diagram shows the link between
different students’ opinions classified by gender.

Full-size DOI: 10.7717/peerjcs.203/fig-12

This configuration enables the user to explore data through the combination of different
aggregations, variables and filters.

Configuration #2. The previous configuration, however, could be complex for some
users by having to control two diagrams at the same time to align different factors. A single
scatter diagram could be added to the dashboard to drill-down data. It is possible to add
another dimension to the scatter diagram component by mapping numerical variables
through the radius of the visualization’s data points.

For instance, following the same example of the first configuration, the differences
between male and females can be observed by a gender aggregation of the data. In this case,
the population of each group is mapped through the radius of the points (Fig. 12).

However, to see how the branch of knowledge affects the value of these variables,
similarly to the previous configuration, it is necessary to continuously filter data by every
single branch (Fig. 13). This configuration is then not recommendable when continuous,
and more complex comparisons (such as the one made in the previous scenario) are
required.

If, on the other hand, data exploration is not continuously required by a user, the
controls could be allocated within a top bar (Fig. 14) that can be hidden to give more space
to the visualizations.

Configuration #3.On the other hand, different pages focused on different data variables
or data dimensions could be configured. This functionality allows freedom when arranging
the content of the dashboards’ pages to make it understandable for every particular user.

In the Observatory’s case, a user might prefer having the dashboard screens organized by
the study edition, being able to navigate through them thanks to a navigation bar (Fig. 15).

Or if preferred, it could be specified that each page will exploit a different set of data
variables; for example, having a single tab to explore the students’ competences (Fig. 16).
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Figure 13 Results derived from the second configuration. The scatter diagram shows the link between
different students’ opinions classified by gender and filtered by the branch of knowledge, showing only the
results related to Science students.

Full-size DOI: 10.7717/peerjcs.203/fig-13

Figure 14 Modification of the second configuration to change the controls location. The controls for
the scatter diagram are arranged in a bar on top of the visualization.

Full-size DOI: 10.7717/peerjcs.203/fig-14

Through this view it is possible to see a misalignment between the perceived level that
the graduates have about their skills and the perceived level of contribution of the studies
regarding the acquisition of that skills, and also between that possessed level and the
perceived required level in their job positions (Michavila et al., 2018b).
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Figure 15 Dashboard involving different information visualizations. By specifying the layout of the
dashboard it is possible to achieve dashboards with different components, each one with its own features.

Full-size DOI: 10.7717/peerjcs.203/fig-15

The previous dashboards are a quite tiny set of the available combinations that can be
achieved through the SPL configuration, but they should serve as an example to show the
possibilities of having a framework for generating personalized dashboards.

Product metrics
The metrics for the SPL are the following regarding its feature model:

• Feature model height: 9
• Features: 146
• Optional features: 106

The number of valid configurations has been omitted, given the recursion of the
dashboards’ composition (as highlighted in the dashboard meta-model), so infinite valid
configurations can be generated.
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Figure 16 Possible layout configuration for comparing students’ skills through different study edi-
tions. This configuration can be useful to identify lack of skills at-a-glance or their evolution through time.

Full-size DOI: 10.7717/peerjcs.203/fig-16

Regarding the core-assets (i.e., the templates’ source code), the following metrics have
been calculated (El-Sharkawy, Yamagishi-Eichler & Schmid, 2018):

• Lines of feature code (LoF): 2,638 lines of feature code. This metric is the addition of
every line of code affected by any Jinja2 directive (i.e., every annotated line of code). It is a
size metric that gives a high-level view about the source code associated to the SPL features.
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Figure 17 Simplified Gantt diagram of the SPL development. The Gantt diagram shows each task re-
garding the SPL development including its contextualization and design.

Full-size DOI: 10.7717/peerjcs.203/fig-17

• Fraction of annotated lines of code (PLoF): 48.39%. This is a variability density metric
showing that the SPL’s products have a 51.61% of common code (2,814 lines of code are
not annotated).

• Scattering of variation points: this metric counts the number of times that a feature
appears in the code (i.e., appears in a Jinja2 condition directive). High scattering values
decreases the readability of the code. By refactoring the code into macros that contain all
code associated to a specific feature, the scattering is reduced.

Given the complex domain in which the product line has been applied (i.e., the
dashboards’ domain), the scattering of the variation points was one of the main concerns,
as high scattering would make the code even more complex. That was the reason to arrange
the feature code into macros as a solution to address the scattering of variability points.

Development time improvement
The development of the presented SPL, including its conceptualization and design, took
82 days, as illustrated through a simplified Gantt diagram in Fig. 17. The core assets
development task includes all the artifacts regarding the SPL (i.e., the DSL, the templates,
etc.).

Before implementing this approach, a dashboard template with the same components
and KPIs was the solution to offer all the results held in the Observatory’s study, so
universities could compare their individual results with the global, aggregated results. The
development of the mentioned dashboard template took 15 days. However, this static
approach limited universities to freely explore their data, as mentioned in other sections.

Five of the 50 universities were interviewed to capture their dashboard requirements and
to estimate the elicitation process time consumption. However, this estimation should be
considered as speculative given the variability of the complexity of the elicitation process,
and especially, given the number of different universities (i.e., users) involved. Nevertheless,
the requirement elicitation took one day for the interviewed universities.

Given the project’s potential continuity, the dashboard implementation process would
mainly consume time regarding requirements elicitation by using the presented SPL
approach, decreasing the time spent on development processes. Without this approach,
the information dashboards implemented for future Observatory’s employability study
editions would remain static and generalized for each involved user.
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Building a personalized dashboard consume resources in terms of requirement elicitation
and design, but also in terms of implementation or development. If the development
phases are automated, then the main benefit is not only decreasing the development time
of individual dashboards, but also, if necessary, devoting more time to the requirements
identification and design phases, which, in the end, are the backbone of well-constructed
dashboards. That is why, although significant time was consumed for the implementation
of the dashboard SPL (82 days), it can be seen as an investment for the future, specifically
in environments where significant quantities of user profiles are involved.

DISCUSSION
The application of domain engineering and the SPL paradigm to identify and factorize
information dashboard functionalities has shown its usefulness to generate different
dashboards with a set of common assets through the study of the dashboards’ domain.
The obtained results are fairly valuable, and open new paths for applying this approach to
other data domains with new requirements.

Dashboards are complex software solutions that could be highly beneficial when
adequately designed and tailored for specific users. These products can support decision-
making processes, assisting visual analysis by presenting information in an understandable
manner. However, the variety of profiles involved in these processes and their different
definitions of ‘‘understandable’’ makes the implementation of dashboards a time- and
resource-consuming task, since a dashboard configuration that is highly useful for one
user could be pointless for the rest of them. What is more, dashboards can be composed
of several elements, from simple visualizations to different linked views, cross-filtering
capabilities, interaction methods, handlers, etc., thus making the dashboards’ domain a
complex domain not only because of the different profiles of potential users, but because of
the great quantity of feasible combinations of these ‘‘dashboard elements’’ to build a proper
solution. In addition, these features can be very fine-grained; in user-centered systems, a
slight modification on visualization types, interaction patterns, layouts, color palettes, etc.
could be crucial regarding the final perceived usability of the product.

Relying on a framework to easily generate information dashboards would allow
stakeholders to focus on the information requirements and their refinement to provide
better results when seeking valuable insights on large datasets. Also, it opens up the
possibility to automatically adapt the dashboards’ configurations to match dynamic
requirements based on the device used (Cruz-Benito et al., 2018b) or other factors.

The factorization of the dashboards’ components into individual features allow fine-
grained reusability and a set of customization options. This fine-grained customization
enables the possibility of having highly functional and exploratory-centered visualizations
as well as more basic visual components more centered on the explanation of insights
through the addition or removal of low-level features. The achieved granularity provides a
foundation to develop not only whole visualization components, but also new interaction
methods and design features that can be easily interchangeable to fulfill particular sets of
user requirements.
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An annotative method of implementation was undertaken using macros to encapsulate
individual functionalities. This method takes all the benefits from the annotative approach
(fine-grained customization) and avoids its code verbosity and scalability issues by dividing
the core assets into base templates and macros (Kästner & Apel, 2008). Although there were
other possibilities to implement the variability points, such as superimposition approach
(which did not fulfilled the requirements for performing this approach, as discussed in
the Materials & Methods section) like the FeatureHouse framework (Apel, Kastner &
Lengauer, 2009; Apel & Lengauer, 2008) or the XVCL (Jarzabek et al., 2003) mechanism
(which fits the feature granularity requirements of this domain), the final decision of using
a templating engine allowed the direct connection of the designed DSL with the final
source code, providing a higher level language to specify the dashboards’ features, as well
as the possibility of organizing the variability points into macros to increase readability,
traceability and maintainability by having all the code associated to a feature in the same
source file.

The chosen technology to implement the DSL was XML. The decision of implementing
directly the DSL in XML technology was made because of the hierarchical nature of
XML, and its resemblance to the hierarchical structure of the feature diagram, thus being
the designed DSL a computer-understandable ‘‘translation’’ of the feature model for the
dashboard generator to process. However, this language could be not as human-readable as
other DSL solutions, generating issues if a non-expert user wants to specify its dashboards
requirements by himself. Creating a friendly user interface to allow the dashboards’ feature
selection without involving direct manipulation of the XML files can be a valuable solution
to address these issues and ease the product configuration process in the future.

Customization at functionality level has illustrated to be straightforward, as it is possible
to easily vary the behavior of the visual components through the DSL. Visual design
attributes customization, however, needs to be faced more deeply, as only the layout
composition can be specified in detail at the moment. The visual customization challenge
cannot be overlooked since dashboards not only have to provide valuable functionality;
they should offer that functionality through a pleasant and usable interface (Few, 2006;
Sarikaya et al., 2018).

On the other hand, this work has addressed customization focused on the presentation
layer of dashboards, but with the SPL paradigm, architectural design can also be customized
in order to provide different functional features regarding data processing, interoperability,
storage, performance, security, etc., achieving a complete customizable dashboard solution,
not only focusing on the visual presentation.

Regarding data acquisition, the developed tool was integrated with the Observatory’s
GraphQL API to provide dynamic data exploration. The connection to this particular
type of data source involved the implementation of specific connectors to decouple the
visualizations from the particular source. The variability of data sources is another identified
challenge to be addressed through this approach, to support different data formats or data
structures. Although counting on a GraphQL API facilitated the data retrieval by the
unification of data requests, it is essential to enable the specification of other data retrieval
methods.
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Product metrics showed that significant feature code was needed to address high
customizability of the dashboards (48.39% of the source code was annotated). Also,
arranging the feature code into macros helped to increase features’ traceability as well as
to decrease the scattering of the variability points throughout the code, making the code
more readable and maintainable.

The approach can decrease the development time of individualized dashboards for each
involved university. As presented in the results section, the SPL not only offered space for
development time improvements, but also enabled the capacity of offering customized
solutions, which was previously regarded as unviable given the time constraints of the
Observatory’s project. Embracing the SPL paradigm can be seen as an investment for the
future for projects with a common domain and with continuity over time.

Finally, it is clear that interesting patterns can be discovered thanks to the application
of this dashboard SPL on the employability and employment fields. The Observatory’s
data provide a great context to perform more advanced analyses to enlighten this complex
domain.

Having powerful visualization tools allow reaching insights about patterns or factors
to guide the execution of more complex analyses and make decisions about the actions
to take or the future research directions, like developing machine learning (ML) models
(García-Peñalvo et al., 2018). Regarding this last field, having visualization tools to explore
the input data before training any ML model could help to build better and more accurate
models through an appropriate feature selection phase guided by the previously reached
insights (Hall, 1999).

The main weaknesses and limitations of this solution come from the preliminary
nature of the framework; it is crucial to further validate the usability of the automatically
generated products to show their usefulness to the main beneficiaries of the dashboards:
the users, as well as assess its implementation in other domains. The approach needs to
be further generalized to provide a more versatile method and to match also development
requirements (available technology or preferred programming languages), although results
seem promising. Automating the generation of dashboards given their goal, their context,
their end users, etc. could be extremely beneficial due to the vast potential of impact that
these tools have (Sarikaya et al., 2018).

CONCLUSIONS
A domain engineering approach has been applied to the dashboards’ domain to obtain a
SPL of this type of software solution. By the identification of commonalities and variability
points, a dashboard meta-model has been developed as well as a feature model to capture
the different customization dimensions of the SPL.

The SPL has been developed through an annotative approach using code templates
and macros (forming the core assets of the family of products). A DSL has been designed
to facilitate and automate the application engineering process. The configuration files
based on the DSL feed a code generator in charge of adding or removing the product
features. The presented approach was applied within the Spanish Observatory for
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University Employability and Employment system, to provide a variety of dashboard
configurations that enable the exploitation and exploration of different dimensions
regarding employability and employment data.

Future research lines will involve refinements of the meta-model and the DSL,
usability testing of the obtained products and A/B testing (Cruz-Benito et al., 2018a; Cruz-
Benito et al., 2018b; Kakas, 2017; Siroker & Koomen, 2013) on different configurations.
Architectural customization could be supported to add more coarse-grained features
like a visualization recommendation engine (Gotz & Wen, 2009; Vartak et al., 2017; Voigt
et al., 2012), interface language translation or data preprocessing techniques before its
presentation. Finally, the customization levels of the dashboards’ visual design and data
sources need to be further addressed.
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