
Teaching and learning strategies of programming for
university courses

Francisco José García-Peñalvo
Computer Science Department Research Institute for

Educational Sciences GRIAL research group
University of Salamanca

 Spain
 fgarcia@usal.es

José Figueiredo
 Research Unit for Inland Development

 Polytechnic of Guarda
 Portugal

 jfig@ipg.pt

ABSTRACT
It is consensual to consider teaching and learning programming
difficult. A lot of work, dedication, and motivation are required
for teachers and students. Since the first programming languages
have emerged, the problem of teaching and learning
programming is studied and investigated. The theme is very
serious, not only for the important concepts underlying the
course but also for the lack of motivation, failure, and
abandonment that such frustration may imply in the student.
Immediate response and constant monitoring of students'
activities and problems are important. With this work, it is our
goal to improve student achievement in courses where
programming is essential. We want each student to be able to
improve and deepen their programming skills, performing a set
of exercises appropriate and worked for each student and
situation. We intend to build a dynamic learning model of
constant evaluation, build the profile of the student. The student
profile will be analyzed by our predictive model, which in case of
prediction of failure, the student will have more careful
attention. Predict the student's failure with anticipation and act
with specific activities, giving the student the possibility of
training and practicing the activities with difficulties. With this
model, we try to improve the skills of each student in
programming.

KEYWORDS
programming, teaching programming, learning
programming, CS0, CS1, datasets, neural networks.

1 Context and motivation
Every year, over 25 years of teaching introduction
to programming, we feel the same problems and difficulties of
the students. Every year we make small adaptations and
experiences in the way of teaching, according to the students'
previous skills and knowledge. However, almost invariably,
the result is the same, high rates of failure, lack of
interest, and consequent dropout.

The initial learning of programming is one of the
great obstacles that students face when they start an
Engineering course. In addition to the inherent difficulties at the
beginning of a new cycle of studies, problems in the
initial learning of programming are one of the main causes of
discouragement and the failure of students. Several factors
may be at the origin of this problem, such as the lack of
capacity for abstraction, the lack of preparation for the
mental construction of the reason necessary for the resolution
of problems or the use of inadequate teaching and learning
methods [3].

Our main motivation for the development of this work is
to understand what difficulties students have, which factors
most influence their learning programming process, which
tools and/or methods or technologies can be used to reduce
problems in the teaching and learning of the initial
programming course. Develop a new learning environment of
programming to help students to overcome their difficulties.

This work is an attempt to demonstrate the importance
to recognize in the first beginning of learning programming
the difficulties that student may have and analyze the
effectiveness of the methods we propose to implement. On the
other hand, we want our experience to contribute significantly
to the entire Computer Science Education community.

J. Figueiredo and F. J. García-Peñalvo, "Teaching and learning strategies of programming for university courses," in TEEM’19 Proceedings of the Seventh International
Conference on Technological Ecosystems for Enhancing Multiculturality (Leon, Spain, October 16th-18th, 2019), M. Á. Conde-González, F. J. Rodríguez-Sedano, C.

Fernández-Llamas and F. J. García-Peñalvo, Eds. ICPS: ACM International Conference Proceedings Series, pp. 1020-1027, New York, NY, USA: ACM, 2019. doi:
10.1145/3362789.3362926.

PO
ST

mailto:jfig@ipg.pt
mailto:fgarcia@usal.es

The remainder of the paper is structured as follows. The next
section describes the state of the art. Section 3 presents working
hypothesis. Section 4 identify the principal objectives
sought. Section 5 details the research approach and methods.
Section 6 presents and discusses the results to date and
their validity. Section 7 describes the dissertation status.
And, finally, the current and expected contributions.

2 State of the art
The teaching and learning of introductory programming courses
is a great challenge for all those who have to deal with this area.
Programming is a process of transforming a mental plan
of current terms into terms compatible with the computer
[17]. When teaching computer programming, the main objective
is to empower students with the skills needed to create
computer programs that can solve real-world problems. In
this context, programming requires quite particular
characteristics and skills that students may struggle to obtain,
often in a short period.

Among these, Jenkins [19] identified the following:
the abstract concepts inherent to programming; the
competencies and mental abilities required to decompose and
solve problems; the use of specific syntax that students are
required to memorize; and the semantics and structure new
non-natural languages. As such, among the topics CS
students are required to learn, computer programming is
particularly difficult. This is a well-known fact, among the
Computer Science Education (CSE) community [3]. Not only
teaching computer programming is a recent area (when
compared to other knowledge areas) but it is also a fast-
changing one. Knowledge and tools rapidly become obsolete,
making it harder to teach and learn even the basics. Since
the emergence of the first programming languages that this
phenomenon is studied. There are numerous studies carried out
with the main reflections on the difficulties of solving
programming problems [11, 19, 30–32]. The teaching of
programming requires a methodology different from that of
other disciplines. Theories such as active learning, learning by
doing, peer assisted learning, or peer instruction [28], with good
results in the most diverse teaching areas, also have confirmed
results in this area [20, 27]. Other methodologies and techniques
can be combined and applied in different environments and
situations and articulated according to the needs and interests of
the students. In the paper presented in [35], the authors present
a systematic review of the articles that describe teaching
approaches of introduction to programming, and those that
provide a positive effect on the approval rates in these courses.
From this work, according to their authors, are the best teaching
practices, which on average can improve the success rates in
introductory programming courses, compared with the
traditional teaching of programming. In recent years, there has
been a growing interest in teaching concepts of computer
science to young people especially in the area of computational
thinking. This interest is not only due to training for future work

or high demand in this field but also because of the benefits that
computer programming can bring to everyone. Computer
programming and robotics, for example, play an important role
in developing skills such as problem-solving, computational
thinking, and creativity. Computational thinking is a
fundamental skill for everyone. The term computational
thinking was made popular by Jeannette M. Wing [36]. The
author defends the mass diffusion of computational thinking,
just like reading, writing, and arithmetic. Computational
Thinking is an aptitude that allows us to create solutions to
problems by making use of computer techniques [13].
Computers can be used to solve problems. However, before a
problem can be tackled, the problem itself and the ways in which
it could be solved need to be understood. Computational
thinking allows us to take a complex problem, understand what
it is and develop possible solutions. There are innumerable
initiatives of various entities and organizations with the aim of
promoting the study of computational thinking and,
consequently, programming [2, 5, 12, 14–16, 23, 24]. Perhaps in
the near future, most students have gone through these
initiatives of dissemination of computational thinking and
programming. Consequently, some of the skills referred to as
essential for learning programming have been more developed.

Recently, work has been done to predict student performance
in the introduction to programming. These methods based on
machine-learning methods, as described in [22], support vector
machines are used to predict students' final exam scores based
on data collected automatically for instructors. In [22] a
prediction model, PreSS (Predict Student Success), based on
machine learning algorithms, is proposed to predict students'
success in introductory programming courses. In addition, the
study analyzes and compares the performance of various
machine learning methods.

3 Problem Statment
After a brief description, contextualization, and motivation on
the subject of teaching difficulties and the initial learning of the
programming, it is important to emphasize that the main
motivation, in the accomplishment of this work, is to be able to
improve our teaching quality. And, consequently, reduce the
high rate of failure, abandonment, and lack of motivation of
students in courses where programming is a fundamental
component.

This research involved the students, from an introductory
programming course taught in C, of Computer Science from the
Polytechnic of Guarda, Portugal. The Polytechnic of Guarda
(IPG) is an institution of higher education located in the interior
of the country. Our study group has very special characteristics
which may affect, in our opinion, the learning programming
process:
 The course of computer engineering, IPG, is usually not the

first choice of students, which in some circumstances affect
students' motivation and engagement.

 Average grade, in recent years, is between 10 and 12 values.

PO
ST

 Students reveal some general difficulties in the area of CS.
 Many of our students have never had programming courses,

nor the opportunity to practice computational thinking
activities.

The main objectives to achieve with this work are:
 Determine the factors that most influence the teaching and

learning process of initial programming.
 Identify the techniques or set of techniques used by teachers

that most influence successful initial programming learning.
 Building the profile of the student in programming,

according to the evaluation along the course of a set of
variables.

 Define and evaluate a machine-learning predictive model of
student failure based on the student profile.

 Create immediate action plans based on the classification of
our predictive model.

4 Research Objectives
Based on the defined objectives, we formulated some research
questions for which our study intends to answer.
 What kind of activities from computational thinking

contribute positively to success in the introduction to
programming?

 Different presentation for the same activity according to the
student learning styles positively influence the success in
programming learning?

 What are the factors that most influence the learning process
of initial programming?

 What are the factors that best characterize the student's
profile in programming?

 Is the predictive model of machine learning of student failure
based on student profile efficient?

5 Research approach and methods
One of the main objectives of this study is to understand the
factors that most influence success, or failure, in the teaching
and learning of initial programming. This study will allow
determining what are the methods, techniques, attitudes, and
behaviors that students and teachers, particularly in the field of
initial programming, with characteristics similar to those of our
study model, improve the educational process. The need to
investigate in education [22] arises when we want to know
better the functioning of a certain educational situation and, we
intend to answer multiple questions that we put on how to
improve our way of acting. Specifically and according to [22], we
must do research in education in the realization of the following
actions:
 Respond to the need to know and improve a certain

educational reality;
 Use new methods in teaching and analyze the effectiveness

of the application of these methods, in order to improve an
educational reality;

 Evaluate the situation studied and analyze the causes that led
to a certain diagnosis;

 Generalize conclusions that may affect other individuals.
With the objective of improving the educational process, the

methodology we will use is action research. According to [1, 21,
26] when a teacher engages in an investigation in the classroom,
he acquires the action research designation. Second, any type of
research involves asking questions, seeking valid and objective
answers, interpreting and analyzing the results and applying
those results to improve the educational process. In the process
of action research, we identify three main phases: identify the
problem under study; collect valid information; analyze and
interpret the results with the aim of improving the process. The
use of this methodology aims to improve learning practices that
allow us to make a significant change. We can see this process of
action research as a dynamic process in constant observation
and evaluation [1, 21, 26]. This type of methodology can also be
seen as a spiraling research process, where the definition of the
problem and context, the planning of the action, the action and
observation, the criticism and reflection result in a new
redefinition of the problem and application of the following
phases of the process to solve/improve the problem.
In the following subsections, they describe the work done in an
attempt to respond to our problems.

6 Improving Computational Thinking
As noted, most of our students never had the opportunity to
develop their computational thinking. Therefore, according to
the known characteristics of the student, we will propose
exercises that allow to develop their cognitive capacities of
reasoning and spatial visualization, strongly associated with the
characteristics necessary for the programming. Some of these
activities referred to in the works we developed in [8–10, 29],
such as: follow and give instructions, drawing maps, description
maps and directions, origami, punched holes, and others. On the
other hand, in order to answer one of the research questions
formulated "What kind of activities from computational thinking
contribute positively to success in the introduction to
programming?", we developed an experiment to evaluate the
results and the behavior of its students with this type of
activities.

According to characteristics of the IPG computer engineering
students, we have created a free course of pre-programming for
improving positive effect on approval success rates in learning
programming. This course is designed to provide students with a
set of computational thinking exercises to substantially improve
their cognitive abilities. The course is not mandatory and will
function with teacher recommendation. The course session
planning activity is:
 Follow and Give instruction.
 Map Design.
 Paper Folding and Origami.

6.1.1. Follow and Give instruction. The use of this kind of
exercises has as purpose to increase the development of

PO
ST

students’ cognitive reasoning abilities and spatial
visualization, strongly associated with the characteristics
necessary for programming [11, 33, 34].

Based on this methodology, which are also used to
evaluate the ability of students to programming, we have
developed exercises to work with students. Some examples:
Example number 1: Students should design on a paper what
a student or a teacher describes.

1. On a sheet of paper draw a square measuring approximately
5 cm. on its sides.

2. Draw a small dot in the center of the square.
3. Draw a line that starts at the top right corner to the bottom

left corner, passed by the point.
4. Draw a line that starts in the upper left corner to the bottom

right corner, passing the point.
5. Write your first name in the triangle below the center point.

Example number 2: It is also possible to practice from an
image, see Figure 1, asking students to describe it through the
design of others images.

Figure 1: Examples for follow and give instruction.

6.1.2. Map Design. With the use of this type of exercises we
aim to develop students’ capacities in planning, designing and
describe in terms of specific characteristics in a concrete
situation. Studies have demonstrated the relationship between
the style and the level of detail in the description and
construction of a map with the objectives of a programming
course [11]. These activities include exercises for the student to
move from point A to point B, within our school for example.
This type of activity also includes the design and / or the
representation of a path in a map. In this exercise we will
evaluate the level of detail and clarity in the resolution (see
Figure 1).

6.1.3. Paper Folding and Origami. Origami and / or paper
folding [6, 7, 18] is a Japanese secular art widespread throughout
the world, known for the development of features, such as:
visual and spatial perception, fine motor coordination, memory,
relieving stress and tension, patience and persistence; self-
confidence, logical thinking and attention and concentration.
Some examples are presented in Figure 2.

7 Building the student profile
In order to find a solution to our problem, improve our way of
acting in the teaching programming in university courses,
increase students’ motivation levels, reduce failure and
contribute to the development of this area, and respond to the

formalized research questions "What are the factors that most
influence the learning process of initial programming?" and
"What are the factors that best characterize the student's profile
in programming?". We develop a prototype that includes the best
proposals of success in the teaching and learning of the initial
programming and that satisfies our particular needs. In
Figure 3, we can see the draft of our proposal. Where we
emphasize the building skills of each student. The construction
of each student's competencies profile in programming is based
on the concept of current video games such as FIFA 19 or
Assassin's Creed, for example. The characters are invited to build
and improve their characteristics and skills in specific areas to
complete their tasks or change their level. For example, a FIFA
player may train a penalty, dribble, free kicks and corner kicks
practice and other actions to improve his or her abilities during
the game. Likewise, we want each student to be able to improve
and deepen their programming skills by performing a set of
appropriate and worked exercises for each student and situation.
It is our intention to be able to identify the minimum set of skills
necessary for the success of the student in the course.

Figure 2: Examples of Origami and Punched Holes
(adapted from [19]).

PO
ST

Figure 3: Representative scheme of our prototype -
building the student profile in programming.

To build the skills of each student, we want to use diverse
types of challenges with immediate feedback and consequent
updating of their set of skills.

7.1.1. Challenges. Is important to know well the student and
their background competences. In order to characterize the
student, we will carry out a set of questionnaires related to some
of the personal data, such as his age, his area of pre-university
studies, his knowledge of programming and general knowledge
in computer science. As in the work developed by [4], we
consider it important to know each student's Index of Learning
Styles. This way it will be possible to adapt some exercises to the
student's learning style. The following group of challenges is
directly related to the contents of the introductory programming
course. In the various stages of initial programming learning,
various types of challenges will be suggested and repeated
according to each student's needs and level of requirement. Some
examples of this type of challenges are Parson problems, gapped
text, multiple matching, multiple choice, and others as mention
in [25]. In addition, exercises that are more traditional like
"Write a program that ..." with output perfectly identified and
the possibility of test with different inputs. All exercises should
have immediate feedback. According to the results, other types
of exercises should be suggested, whether it is to improve a
certain competence or to acquire new skills.

8 Predictive Model
In this section, we described a machine-learning predictive
model of student failure based on the student profile, which is
built throughout programming classes by continuously
monitoring and evaluating student activities, described in the
last subsection.
Table 1 describes the variables (attributes) collected in order to
build each student profile. The data was then divided into
training and test datasets. The training dataset was then used to
build the model while the test dataset was used to validate it.
The resulting model allows teachers to early identify students
that are more likely to fail, allowing them to devote more time to
those students and try novel strategies to improve their
programming skills. The proposed predictive model of student
failure based on the student profile is represented in a schematic
form in Figure 4.

9 Results to date and their validity
The main purpose of this section is to justify and validate our
claims.

10 Results for Improving Computational
Thinking

Two online questionnaires were developed. One with 20
questions about Punched Holes (PH) and another with 5 Follow
and Give Instruction (FGI) activities. The number of students
who answered the questionnaire was 46. The PH questionnaire
was evaluated by the number of correct answers. The FGI of
activities were classified according to the following evaluation
scale from not responding (value 0) to detailed description and
using references (value 4). The results of Punched Holes (PH)
activity are shown in the table \ref{tab1}. In the first line, PH <
10, 9 of the 46 students had a score of less than 10 correct
answers. Of the 9 students, 6 successfully completed the course,
which corresponds to a rate of 66.7%. For a score greater than 10
correct answers corresponds to a rate of 67.6%, and for a score
greater an equal than 14 correct answers correspond to a rate of
77.8%. As it can easily be seen, in Table 2, we highlight the
results for FGI >= 3, 20 students. Having successfully completed
the course 18 students, which corresponds to 90%. InTable 3, we
combine the results of the two activities. It is important to
enhance the results combined with the FGI activity (see Table 4),
of values greater than or equal to 3. The results are 100%, 88.9%
and 100%, for the different PH results. These results lead us to
believe that Follow and Give Instruction computational thinking
activity has a strong influence on the success of the course. This
experiment and results are described in [9].

PO
ST

Table 1. Student profile attributes collected using
information provided by the students and the teacher.

Figure 4: Predictive model of student failure based on the
student profile.

Table 2. Results PH questionnaire.

Table 3. Results Follow and Give Instructions (FGI)
activities.

Table 4. Results for PH and FGI.

11 Results for Predictive Model
For evaluating the performance of the classifier model and
asserting its quality, we use the accuracy and precision metrics,
expressed as percentages. These metrics are based on a
confusion matrix, see Table 5, containing the number of
correctly and incorrectly classified examples for each class, in
the form of true positives (TP) - that represents the students who
failed and the classifier confirms, true negatives (TN) - which
means that the students succeeded and the classifier confirms,
false positives (FP) - in reality the students have succeeded and
are classified as fail, and false negatives (FN) - students were
classified as having success but failed. A perfect classifier should
only present non-zero values in the confusion matrix main
diagonal, as these correspond to correct classifications, while the
remaining “cell” values represent mis-classified samples.

Table 5. Confusion matrix for binary classification.

In order to build a neural network predictive model for
student failure, Multiple Back-Propagation software, available at
http://mbp.sourceforge.net/ was used.

The application of our propose of machine learning
predictive model of student failure, the results obtained are
expressed as a percentage. These results are subject to a
normalization, which transforms all values with a percentage
greater than 50%, are classified as 1 (failure), the others as 0
(success). After normalization, we calculate the values according
to the confusion matrix for binary classification, at the end we
obtain the results present in Table 6. In our experiments, the
most problematic value is the students who fail, and is classified
as success (FN). According to the model, these students will not
be given special attention because the model predicts they will
succeed. However, in our model, this value is down 1.96% which
corresponds to 1 student. The results show, that the number of
correct decisions that the classifier makes, or the percentage of
all students that are correctly classified, the accuracy is 94,1%,
the precision is 95,5%, which represents the correctly classified
students.

PO
ST

Table 6. Confusion matrix for binary classification, with
the results obtained.

12 Dissertation Status
The first barrier for most engineering students is learning to
program. As described earlier in this document, several factors
may be at the root of this problem. Moreover, this phenomenon
is universal. It is not specific to a course, school or country.
Understanding students’ difficulties and responding with
methods and tools to help them overcome them is the main
objective of this work. Although there are numerous research
papers, tools and methods that improve teaching and learning,
the results have not improved. We are convinced that this is due
to the different characteristics of the students, where,
consequently, they require different teaching and learning
methods. An automatic tool that can detect students’ difficulties
will allow the student to get important feedback from their skills.
And, it will provide the teacher with a quick means of detecting
difficulties, so that he can act in an effective and personalized
way.
So far:
 We identify the problem and find that it is a universal

problem.
 We identify our goals and define the research questions.
 In an attempt to answer our research questions, we construct

the student profile based on the set of activities developed
throughout the course and construct a predictive model of
machine learning of student failure based on the student
profile.

 We believe the state of the art can be improved. It is
necessary to analyze each work with activities carried out
and results achieved in reducing the difficulties of students
in the courses of initial programming.

 Our study group has small dimensions. These are the
students of the computer course at the Polytechnic of
Guarda. We need to extend the study group to more
students.

 It is necessary to improve data collection. It is necessary to
collect as much data as possible from the activities carried
out by the students. And in an automatic way, only in this
way will it be possible to achieve the goals proposed.

 It is necessary to construct the specific action plans
according to the topics of the subject and the proficiency
profile of the student.

13 Current and expected contributions
We find our work of great utility to find the solution to the
problems of learning from initial programming. The dynamic
and constant analysis of the students in programming, based on
the construction of the profile of the student, will allow to
evaluate the student at each moment of his course and to act in
an immediate way. This model will allow early detection of
students' difficulties and problems and encourage the student to
improve and feel that they are being accompanied in a very
personal way. Because the exercises are customized according to
your needs and characteristics.

With the described model it will be possible to establish a
relationship through the student profile in programming and the
final results of the course of initial programming. A trained
neural network that gives us the probability that a student with
a certain profile will fail the course of initial programming, will
be a precious tool to achieve the proposed goals.

This work will allow us to reflect on the importance of
computational thinking in the student’s competences, acquired
over the years of student. And your influence on your future life
as a student in courses where programming is essential. This
need is justification for the need for the pre-programming course
or clubs of computational thinking activities. For, as already
described, many of the students who enter the course of initial
programming, on the IPG, never had the opportunity to practice
such computational thinking skills.

ACKNOWLEDGMENTS
This work is part of the PhD program in Informatics Engineering
at the University of Salamanca, with the provisional title of
"Learning Strategies and Learning Programming in University
Students". Having as director Professor Francisco José García-
Peñalvo.

REFERENCES
[1] Arends, R. 2005. Learning to Teach. McGraw-Hill Education.
[2] Basogain, X. et al. 2017. Computational Thinking in pre-university Blended

Learning classrooms. Computers in Human Behavior. (May 2017).
DOI:https://doi.org/10.1016/j.chb.2017.04.058.

[3] Bergin, S. and Reilly, R. 2005. Programming: Factors that Influence Success.
SIGCSE ’05: Proceedings of the 36th SIGCSE Technical Symposium on Computer
Science Education (St. Louis, Missouri, United States, 2005), 411–415.

[4] Carmo, L. et al. Learning styles and problem solving strategies.
[5] Cole, E. 2015. On Pre-requisite Skills for Universal Computational Thinking

Education. (2015), 253–254. DOI:https://doi.org/10.1145/2787622.2787737.
[6] Cooper, S. et al. 2015. Spatial Skills Training in Introductory Computing.

Proceedings of the Eleventh Annual International Conference on International
Computing Education Research. (2015), 13–20.
DOI:https://doi.org/10.1145/2787622.2787728.

[7] Falomir, Z. 2016. Towards A Qualitative Descriptor for Paper Folding
Reasonin. Proc. of the 29th International Workshop on Qualitative Reasoning
(QR’16) (New York, USA, 2016).

[8] Figueiredo, J. et al. 2016. Ne-course for learning programming. Proceedings of
the Fourth International Conference on Technological Ecosystems for Enhancing
Multiculturality - TEEM ’16 (New York, New York, USA, 2016), 549–553.

[9] Figueiredo, J. and Garcia-Peñalvo, F.J. 2017. Desenvolver o Pensamento
Computacional Usando Seguir e Dar Instruções. TICAI 2017 TICs para el
Aprendizaje de la Ingeniería. O. da S. Alfonso Lago Ferreiro, André Fidalgo, ed.
101–108.

[10] Figueiredo, J. and García-Peñalvo, F.J. 2017. Improving Computational
Thinking Using Follow and Give Instructions. Proceedings of the 5th
International Conference on Technological Ecosystems for Enhancing
Multiculturality - TEEM 2017 (New York, New York, USA, 2017), 1–7.

PO
ST

[11] Fincher, S. et al. 2005. Computer Science at Kent programming courses. 1
(2005).

[12] García-Peñalvo, F.J. et al. 2016. Evaluation Of Existing Resources
(Study/Analysis). (Jan. 2016). DOI:https://doi.org/10.5281/ZENODO.163112.

[13] García-Peñalvo, F.J. 2016. What Computational Thinking Is. Journal of
Information Technology Research. 9, 93 (2016).

[14] García-Peñalvo, F.J. and Mendes, A.J. 2017. Exploring the computational
thinking effects in pre-university education. Computers in Human Behavior.
(Dec. 2017). DOI:https://doi.org/10.1016/j.chb.2017.12.005.

[15] González-González, C.S. 2019. State of the art in the teaching of computational
thinking and programming in childhood education. Education in the Knowledge
Society 20.

[16] Grover, S. and Pea, R. 2013. Computational Thinking in K-12: A Review of the
State of the Field. Educational Researcher. 42, 1 (2013).
DOI:https://doi.org/10.3102/0013189X12463051.

[17] Hoc, J.-M. and Nguyen-Xuan, A. 1990. Language Semantics, Mental Models
and Analogy. J.-M. Hoc, T. R. G. Green, R. Samurçay, & D. J. Gilmore (Eds.),
Psychology of Programming. (1990), 139–156.

[18] Jaeger, A.J. et al. 2015. What Does the Punched Holes Task Measure? (2015).
[19] Jenkins, T. 2002. On the Difficulty of Learning to Program. Language. 4, (2002),

53–58. DOI:https://doi.org/10.1109/ISIT.2013.6620675.
[20] Kelly, J.O.’ et al. An Overview of the Integration of Problem Based Learning

into an existing Computer Science Programming Module.
[21] Kemmis, S. et al. 1982. The Action Research Planner. Deakin University.
[22] Liao, S.N. et al. 2019. A Robust Machine Learning Technique to Predict Low-

performing Students. ACM Transactions on Computing Education. 19, 3 (2019),
1–19. DOI:https://doi.org/10.1145/3277569.

[23] Lye, S.Y. and Koh, J.H.L. 2014. Review on teaching and learning of
computational thinking through programming: What is next for K-12?
Computers in Human Behavior. 41, (2014), 51–61.
DOI:https://doi.org/10.1016/j.chb.2014.09.012.

[24] Mason, D. et al. 2016. Computational Thinking as a Liberal Study. Proceedings
of the 47th ACM Technical Symposium on Computer Science Education (SIGCSE
’16). (2016), 24–29. DOI:https://doi.org/10.1145/2839509.2844655.

[25] Milková, E. 2015. Development of Programming Capabilities Inspired by

Foreign Language Teaching. Procedia - Social and Behavioral Sciences. 171, (Jan.
2015), 172–177. DOI:https://doi.org/10.1016/j.sbspro.2015.01.104.

[26] Mills, G. 2007. Action Research: A Guide for the Teacher Researcher. (2007).
[27] Nuutila, E. et al. Learning Programming with the PBL Method - Experiences

on PBL Cases and Tutoring.
[28] Porter, L. et al. 2014. Predicting student success using fine grain clicker data.

Proceedings of the tenth annual conference on International computing education
research - ICER ’14 (New York, New York, USA, 2014), 51–58.

[29] QUITÉRIO FIGUEIREDO, J.A. 2017. Cómo mejorar el pensamiento
computacional: un estudio de caso. Education in the Knowledge Society (EKS).
18, 4 (Dec. 2017), 35. DOI:https://doi.org/10.14201/eks20171843551.

[30] Rojas-Lopez, A. and Garcia-Penalvo, F.J. 2018. Learning Scenarios for the
Subject Methodology of Programming From Evaluating the Computational
Thinking of New Students. IEEE Revista Iberoamericana de Tecnologias del
Aprendizaje. 13, 1 (Feb. 2018), 30–36.
DOI:https://doi.org/10.1109/RITA.2018.2809941.

[31] Rojas-López, A. and García-Peñalvo, F.J. 2019. Personalized Education for a
Programming Course in Higher Education. Innovative Trends in Flipped
Teaching and Adaptive Learning. M.L. Sein-Echaluce et al., eds. IGI Global.
203–227.

[32] Shuhidan, S. et al. 2009. A taxonomic study of novice programming summative
assessment. Conferences in Research and Practice in Information Technology
Series. 95, (2009), 147–156.

[33] Simon et al. 2006. Predictors of success in a first programming course.
Proceedings of the 8th Austalian conference on Computing education - Volume
52. (2006), 189–196. DOI:https://doi.org/10.1145/953051.801357.

[34] Study, N.E. 2012. An Overview of Tests of Cognitive Spatial Ability. 66th
EDGD Mid-Year Conference Proceedings. (2012), 6.

[35] Vihavainen, A. et al. 2014. A systematic review of approaches for teaching
introductory programming and their influence on success. Proceedings of the
tenth annual conference on International computing education research - ICER
’14. (2014), 19–26. DOI:https://doi.org/10.1145/2632320.2632349.

[36] Wing, J.M. 2006. Computational Thinking [Pensamiento computacional].
Communications of the Association for Computing Machinery (ACM). 49, 3
(2006), 33–35.

PO
ST

