
Andrea Vázquez-Ingelmo
GRIAL Research Group
University of Salamanca

Salamanca, Spain
andreavazquez@usal.es

Alicia García-Holgado
GRIAL Research Group
University of Salamanca

Salamanca, Spain
aliciagh @usal.es

Francisco J. García-Peñalvo
GRIAL Research Group
University of Salamanca

Salamanca, Spain
fgarcia@usal.es

Abstract—Software engineering provides the competences
and skills to design and develop robust, secure and efficient
applications that solve real problems. Students have to develop
their abstract thinking to find solutions taking into account not
only technical development, but economic and social impact. In
previous years, different changes have been introduced in the
teaching methods with significant outcomes. However, students
are still facing difficulties with one of the core contents of the
subject, UML. For this reason, the present work aims to
introduce C4 model as a complement of the existing UML
diagrams. This proposal uses the two first levels of the C4
model to complement the requirements elicitation process,
traditionally based only on use cases, to let students start the
design of their systems without going into greater technical
details.

Keywords—UML, software architecture, software
documentation, C4 model, software engineering, abstraction.

I. INTRODUCTION

Software Engineering I is a mandatory subject of the
Degree in Computer Science at the University of Salamanca
(Spain). This subject addresses the first activities of the
software development process. Through its contents, students
learn how the early stages of the life cycle of information
systems are carried out, focusing on their definition, planning
and analysis.

Software Engineering I is the students’ first look in the
degree at systematic approaches to manage and develop
information systems. Students take the course in the second
semester of the second year. At this point, they have acquired
programming and computational skills. However, when
students take this subject, they face a different way of
approaching software development, because software
engineering needs higher levels of abstraction. For these
reasons, the subject is perceived as difficult and hard to
understand by the students.

This discipline is also a challenge for teachers, as they
need to introduce new methods to engage students with the
subject and to foster knowledge acquisition.

In previous years, different changes have been introduced
in the teaching methods, like Project-Based Learning (PBL)
and active methodologies with significant outcomes [1, 2].
However, based on the learning outcomes and feedback
collected during the last 4 years, students are still facing
difficulties with one of the core contents of the subject: The
Unified Modeling Language (UML).

UML is a modeling language that supports the
specification, visualization, construction and documentation
of information systems [3, 4]. Although UML syntax is
divided between two subjects, the wide syntax of this
language, the variety of diagrams, the programming
background of the students, among other factors, makes its
learning a challenge [5, 6]. Besides, through informal
conversations, year by year, the students express that
software engineering a useless subject, something that fancy
startups do not use. Most of them think that UML is
something old, not necessary to define and develop software.

The purpose of UML is to rely on a unified syntax for
communicating from requirements to design decisions with
the goal of being understood by the involved stakeholders.
One of the main difficulties faced by students when studying
this language is the gap that they perceive between the
systems they model throughout the subject and the systems
they have actually coded throughout past subjects.

George Fairbanks named this issue the “model-code gap”
[7]. In [7], this gap is described through the differences
among different aspects present in models and code: the
vocabulary employed in models (modules, components,
protocols, associations, etc.) in contrast with the vocabulary
employed in code (packages, classes, variables, functions,
etc.), the high levels of abstraction in models (especially at
the analysis phase of the software development process) in
contrast with the concrete and specific nature of source code,
among other factors that enlarge this gap.

The model-code gap threatens the understanding of UML
because students need to shift their minds from concrete code
towards abstract models, and the main problem is that they
often do not see the relationship (and thus, the utility)
between these low-level and high-level perspectives of
information systems.

A variety of works in the literature have tried to address
this issue through different methodologies; for example, by
using a combination of UML and OCL [8], by adapting
materials to the audience [5], by employing interactive
exercises to visually understand the implications of UML
diagrams [9], or even by teaching modeling languages before
programming languages [10].

On the other hand, some active methodologies, such as
project-based learning (PBL), try to ease the comprehension
of this subject by fostering the involvement of students
through the development of projects that are close to real-
world context. These methodologies have the goal of raising
the motivation of students regarding such a complex subject,

Vázquez-Ingelmo, A., García- Holgado, A., & García-Peñalvo, F. J. (2020). C4 model in a Software Engineering subject to ease the comprehension of UML and
the software development process. In 2020 IEEE Global Engineering Education Conference (EDUCON), (27-30 April 2020, Porto, Portugal) (pp. 919-924). IEEE.

C4 model in a Software Engineering subject to ease
the comprehension of UML and the software

development process (*)

PR
E-P

RIN
T

(*) This work has been partially funded by the Spanish Government Ministry of Economy and Competitiveness throughout the DEFINES
project (Ref. TIN2016-80172-R)

and to increase the utility perception of software engineering
in real-life scenarios [11, 12].

For these reasons, this paper proposes the introduction of
a new approach for documenting software as a complement
of UML in the subject of Software Engineering I: the C4
model [13]. This model is already being employed to
describe software architectures in real contexts [14-16].

The C4 model proposes four levels of abstraction:
context, containers, components and code. Each information
system is composed by these elements and persons (i.e.,
users that interact with the software system). With this
model, information systems are divided in more manageable
parts that can be better analyzed. Its simplified syntax and
abstraction could be a benefit for students to understand how
software systems are designed and built.

The rest of the paper is organized as follows. Section II
explains how the subject introduces and works with UML
and the main issues students face with this language. Section
III outlines the syntax of the C4 model. Section IV describes
the methodology followed in the subject. Section V presents
the actions proposed to introduce the C4 model, while
section VI illustrates different proposals of the C4 model in
the context of the subject. Finally, Section VII summarizes
the main conclusions of the proposal.

II. CONTEXT

Software Engineering I covers the definition, planning
and analysis of information systems. The whole course is
driven by milestones following the software development
process; in this particular case, milestones are requirements
elicitation, domain model and use-case realization.

The sessions in which UML is explained are structured
following this model. First, use-case diagrams are presented
to lay the foundations of requirement elicitation. Then, class
diagrams are explained at analysis level, meaning that classes
should represent domain entities and their relationships at a
high-level, omitting implementation-level details. Finally,
sequence and communication diagrams are introduced.

These sessions are followed by workshops in which real-
world problems are tackled and documented through the
presented UML diagrams, putting special emphasis in class
diagrams to foster abstract thinking.

Moreover, students must apply the acquired knowledge
to analyze and document their own information system,
which constitutes their final project. This project covers only
two phases, requirement elicitation and requirement analysis
(domain model, interaction view and architectural proposal).
The other phases of the software engineering process are
studied in Software Engineering II during the third year of
the degree.

For this project, the teachers propose a generic goal that
the system must accomplish, and students have the freedom
to design any type of system that lets users reaching the goal,
following the software development process and using UML
diagrams to document each phase.

One of the main issues students face is the
conceptualization of the system. The project’s requirements
give the students freedom to choose how to address the
stated problem, but they must think carefully about them
because these requirements are the drivers of the whole

project. If this first conceptualization phase is poorly carried
out, it could affect the rest of the phases, given the
incremental nature of the project deliveries and the
relationships among the different milestones.

In fact, the majority of problems and mistakes increase
during the second phase of the project, in which students
must develop the domain model of their solution. Switching
from use-case diagrams (at the requirements elicitation
phase, the first milestone of the project) to class diagrams (at
the domain model development phase, the second milestone
of the project) seems to be a complex step for students.

The most common mistakes found during this phase are
related to the required abstraction levels of the domain
model. Students usually focus on functionality instead of on
the structure of the domain, introducing several modeling
errors in their UML class diagrams.

During the first milestone students are focused on use-
cases, which are more related to what they have learning
through programming subjects (i.e., offering services or
some functionality to end users). However, there are also
problems at this stage, because students usually end up
modeling an interface for their solutions (including buttons,
text inputs, etc.) more than the functionality pieces of their
systems.

The C4 model offers a syntax that could make the
conceptualization and abstraction of a system’s functionality
an easier and less convoluted task.

III. C4 MODEL

The C4 model defines software systems through four
views. Each of these levels of the C4 model is focused on a
certain perspective of the system. The syntax is simple and
flexible. In this section, the notation of this model is outlined
based on the work of Simon Brown [13], in order to
contextualize the next sections.

The first level (context) focuses on framing the software
system to be modeled by representing the different persons
or actors involved and external systems that provide any kind
of service to our system. The interactions among components
are represented by dashed arrow lines annotated by a
description withe the role of the relationship. External or
already implemented services are colored with different from
the target software system. At this level, further details
regarding the involved software systems are omitted,
providing a high-level view of the context in which the target
system will be framed.

The second level decomposes the software system in
containers. This view outlines the necessary components to
provide the services that the system would offer. Again,
further details such as the internal structure of the
components are omitted, providing only a functional
description of each container and the relationships among
them.

 Containers are in turn formed by components, which is
the perspective in which the C4 model focuses on the third
level. The collaboration between the different components
must provide the service or functionality of the container
described at the second level of the C4 model. A legend that
outlines the main notation elements of the C4 model can be
consulted in Fig. 1.

PR
E-P

RIN
T

Fig. 1. Notation of the elements that compose the C4 model. This specific notation is used by Structurizr (https://structurizr.com/), a documentation tool by
Simon Brown that supports the creation of C4 model diagrams. Source: Simon Brown [17].

Finally, the fourth level (code-level) can be specified
through UML diagrams, such as class diagrams, sequence
diagrams, components diagrams, etc.

One of the strengths of the C4 model is the continuous
use of explicit descriptions in every involved element within
the diagrams, avoiding the ambiguity that can be introduced
through UML given its elaborated syntax.

The notation of the C4 model is not restricted to a set of
strict rules. In fact, the notation is more concerned in
dividing the system in the mentioned four levels and in
developing comprehensible diagrams than in standardizing a
syntax. If any element or notation needs to be adapted to the
domain of application, as long as it is well defined, there
isn’t any restriction to do it [17].

IV. METHODOLOGY

The methodology is based on the active learning
methodology implemented through cooperative and
collaborative learning, an approach of flipped classroom [18,
19] for the theorical contents, and Project-Based Learning
(PBL) [20-22] that were already introduced in the Software
Engineering I subject during the 2017-18 course [23]. The
proposed actions of the current work will be framed within
the active learning methodology. In particular, as part of the
activities associated to the final project in which students
work in teams from the beginning of the course in order to
achieve a set of milestones related to the software
engineering process.

Regarding the study case monitoring and impact, a
satisfaction questionnaire to get the students’ opinion about
the implemented measures is employed. Authors have used a
satisfaction questionnaire published as an annex in the
doctoral dissertation “Evaluation of the impact of a teaching
methodology, based on active student learning, in computing
in engineering” by González Rogado [24]. This
questionnaire was modified to hold specific questions
regarding the introduction of the C4 model.

V. ACTIONS

The introduction of the C4 model approach for
documenting software architectures is carried out at the
beginning of the course (i.e., at the requirements phase).

At the requirements elicitation phase, students are asked
to identify the main requirements and users of their final
project through use-case diagrams. This phase is a challenge
for them, because they need to understand the goal and
formalize a set of features to reach it. Moreover, they try to
define a set of requirements instead a holistic overview of the
system that they want to develop to solve the proposed
problem.

The simplified syntax of the C4 model is set to help them
identify main actors, external systems and internal
components, and as a support to perform brainstorming
regarding their system’s requirements and goals.

The two first levels of the C4 model (i.e., system context
and container levels) are employed, as they let students
design their systems without going into greater technical
details. Besides, although these models have a high
abstraction level, are pretty near to real world, in which
students can identify even mobile apps or websites as
elements connected with other tools and different users.

At the end of the semester, when students have developed
their final project, they are asked to do another C4 model of
the final system. This C4 model should be similar to the one
developed at the beginning, but with the specific components
that are part of their solution.

VI. C4 MODEL APPLICATION EXAMPLE

As introduced in the methodology section, the Software
Engineering I subject previously implemented an active
learning methodology based using Project-Based Learning
(PBL). Students that chose this active modality are involved
in the final project since the beginning of the semester.

PR
E-P

RIN
T

During the 2018-2019 course, the final project consisted
in designing a system that accomplish the goal of promoting
diversity in business contexts. Students needed to identify a
set of requirements the system should have to reach the goal
and model them to obtain an analysis model.

A great variety of solutions were proposed; from hiring
apps that help employers to avoid bias when seeking for
employees to information repositories to foster awareness.

Fig. 2. Context view of a proposed inclusive hiring system using the C4 model.

Fig. 3. Container view of a proposed inclusive hiring system using the C4 model.

PR
E-P

RIN
T

However, although the ideas fulfilled the project
requirements, students had trouble documenting them with
UML, as detailed in Section II.

Students were not totally able to recognize the conceptual
classes of their domains and relate them to their previously
identified functional requirements through use-case
diagrams.

Given that the C4 model combine the static structure of
the system with its functionality through its different
hierarchical levels, it might ease these difficulties
encountered at the first phases of the project development.

Figures 2 and 3 shows one of the proposed solutions for
the final project. Students designed a system that rates
businesses based on the proportions of employees that
belong to some demographic group. The rating increases if
the business shows balanced proportions, so it increases if
the business hires people that belong to minorities or
discriminated groups.

The conceptualization phase is complex, and students
encounter a lot of barriers that are drawn across the rest of
the milestones if conceptualization issues are not solved at
the beginning of the course.

The C4 model can assist students with this task and help
them to identify the main functionalities each container must
have, thus making the process of developing the use-case
diagrams more straightforward.

For example, this model could help students with the
organization of functionalities at the requirements elicitation
phase. In this case, the use-case diagram shown in Figure 4
details the functionality of the user management container
outlined in Figure 3.

Fig. 4. Use-case diagram for the proposed hiring system’s user
management.

Also, by detecting the relationships among containers at
the first stage of the project, students can rely on these

associations and the information requirements of each
container to build their domain model.

Finally, as explained before, the third milestone of the
final project is focused on the development of interaction
diagrams (specifically, sequence diagrams). These can be
easily added to the C4 model at its last level (code-level),
relating them to the specific use-cases that a container holds
and providing a whole and organized view of the system.

For example, Figure 5 shows a sequence diagram for the
use-case named “modify business data”.

Fig. 5. Sequence diagram that represents the modification of business data
within the proposed hiring system.

The C4 model and its different hierarchical levels,
promote the comprehension of the software architecture and
reduces the model-code gap. Moreover, the hierarchical
structure of the C4 model allow “zoom-in and zoom-out” on
systems’ details.

Teaching how to employ this model along with UML
could enhance the learning outcomes and increase the
motivation regarding the subject.

VII. DISCUSION AND CONCLUSIONS

The main goal of this case study is to raise the students’
perception regarding software documentation and to ease the
comprehension of UML.

With this approach, students work with a methodology
closer to businesses contexts, that can be understood by the
stakeholders [25] by outlining the whole system as sets of
containers and components with specific functionalities and
goals.

This methodology is also closer to the reality of how
systems are being currently developed (e.g., distributed
components, communication through API calls, services held
in different servers, etc.) [26, 27], providing a high-level
overview of the organization and information flows of the
different system’s components.

However, the C4 model does not replace the UML
language, it wraps and refactors it in more manageable
pieces. In fact, as mentioned in others sections of this work,
the fourth level of the C4 model (i.e., code-level), can be
represented through UML class diagrams or similar
(https://c4model.com/#coreDiagrams).

So, in this case, the C4 model can be seen as a
complement to ease the comprehension of UML diagrams
and the software development process.

PR
E-P

RIN
T

This proposal will be applied in the forthcoming years.
The analysis of the learning experience will be carried out in
the long-term in order to rely on meaningful samples from
different academic years.

The satisfaction questionnaire is employed to validate the
utility and acceptation of the C4 model as a support to
understand and ease the comprehension of the first phases of
the software process.

REFERENCES
[1] A. García-Holgado, F. J. García-Peñalvo, and M. J. Rodríguez

Conde, "Pilot experience applying an active learning methodology in
a Software Engineering classroom," in 2018 IEEE Global
Engineering Education Conference (EDUCON), (17-20 April 2018,
Santa Cruz de Tenerife, Canary Islands, Spain)USA: IEEE, 2018,
pp. 940-947.

[2] A. García-Holgado, F. J. García-Peñalvo, M. J. Rodríguez-Conde,
and A. Vázquez-Ingelmo, "El campus virtual como soporte para
implementar una metodología activa para mejorar la tasa de éxito en
la materia de Ingeniería del Software," in Actas IX Jornadas
Internacionales de Campus Virtuales, 11-13 Septiembre
2019Popayán, Colombia: Asociación Red Universitaria de Campus
Virtuales (RUCV), 2019.

[3] P. Stevens and R. Pooley, Using UML: software engineering with
objects and components. Addison-Wesley Longman Publishing Co.,
Inc., 1999.

[4] A. Van Lamsweerde, Requirements engineering: From system goals
to UML models to software. Chichester, UK: John Wiley & Sons,
2009.

[5] S. Moisan and J.-P. Rigault, "Teaching object-oriented modeling and
UML to various audiences," in International Conference on Model
Driven Engineering Languages and Systems, 2009, pp. 40-54:
Springer.

[6] K. Siau and P.-P. Loo, "Identifying difficulties in learning UML,"
Information Systems Management, vol. 23, no. 3, pp. 43-51, 2006.

[7] G. Fairbanks, Just enough software architecture: a risk-driven
approach. Marshall & Brainerd, 2010.

[8] L. Burgueño, A. Vallecillo, and M. Gogolla, "Teaching UML and
OCL models and their validation to software engineering students:
an experience report," Computer Science Education, vol. 28, no. 1,
pp. 23-41, 2018.

[9] S. Frezza and W. Andersen, "Interactive Exercises To Support
Effective Learning of UML Structural Modeling," in Proceedings.
Frontiers in Education. 36th Annual Conference, 2006, pp. 7-12:
IEEE.

[10] C. Starrett, "Teaching UML modeling before programming at the
high school level," in Seventh IEEE International Conference on
Advanced Learning Technologies (ICALT 2007), 2007, pp. 713-714:
IEEE.

[11] M. Daun, A. Salmon, T. Weyer, K. Pohl, and B. Tenbergen,
"Project-Based Learning with Examples from Industry in University
Courses: An Experience Report from an Undergraduate
Requirements Engineering Course," in 2016 IEEE 29th International

Conference on Software Engineering Education and Training
(CSEET), 2016, pp. 184-193.

[12] F. Llopis and F. G. Guerrero, "Introducing competitiveness and
industry involvement as learning tools," in 2018 IEEE Global
Engineering Education Conference (EDUCON), 2018, pp. 298-307.

[13] S. Brown, "Software Architecture for Developers—Volume 2:
Visualise, document and explore your software architecture," ed:
Ebook, 2017.

[14] T. Masood and J. Egger, "Adopting augmented reality in the age of
industrial digitalisation," 2019.

[15] J. Silva et al., "An Online Platform For Real-Time Air Quality
Monitoring," in 2019 5th Experiment International Conference (exp.
at'19), 2019, pp. 320-325: IEEE.

[16] A. Vázquez-Ingelmo, A. García-Holgado, F. J. García-Peñalvo, and
R. Therón, "Dashboard Meta-Model for Knowledge Management in
Technological Ecosystem: A Case Study in Healthcare," in UCAmI
2019, Toledo, Castilla-La Mancha, Spain, 2019, vol. 31, no. 44:
MDPI.

[17] S. Brown. (2018). The C4 Model for Software Architecture.
Available: http://c4model.com/

[18] E. M. Choi, "Applying Inverted Classroom to Software Engineering
Education," International Journal of e-Education, e-Business, e-
Management and e-Learning, vol. 3, no. 2, pp. 121-125, 2013.

[19] G. C. Gannod, J. E. Burge, and M. T. Helmick, "Using the Inverted
Classroom to Teach Software Engineering," in Proceedings of the
30th international conference on Software engineering, 2008, pp.
777-786.

[20] V. Estruch and J. Silva, "Aprendizaje basado en proyectos en la
carrera de Ingeniería Informática," presented at the Actas de las XII
Jornadas de la Enseñanza Universitaria de la Informática, JENUI
2006, Deusto, Bilbao, 2006.

[21] L. Helle, P. Tynjälä, and E. Olkinuora, "Project-based learning in
post-secondary education–theory, practice and rubber sling shots,"
Higher Education, vol. 51, no. 2, pp. 287-314, 2006.

[22] J. A. Macias, "Enhancing Project-Based Learning in Software
Engineering Lab Teaching Through an E-Portfolio Approach," IEEE
Transactions on Education, vol. 55, no. 4, pp. 502-507, 2012.

[23] A. García-Holgado, F. J. García-Peñalvo, and M. J. Rodríguez-
Conde, "Pilot experience applying an active learning methodology in
a Software Engineering classroom," in 2018 IEEE Global
Engineering Education Conference (EDUCON), (17-20 April 2018,
Santa Cruz de Tenerife, Canary Islands, Spain)USA: IEEE, 2018,
pp. 940-947.

[24] A. B. González Rogado, "Evaluación del impacto de una
metodología docente, basada en el aprendizaje activo del estudiante,
en computación en ingenierías," Departamento de Didáctica,
Organización y Métodos de Investigación, Universidad de
Salamanca, Salamanca, España, 2012.

[25] B. Dobing and J. Parsons, "How UML is used," Communications of
the ACM, vol. 49, no. 5, pp. 109-113, 2006.

[26] M. Kassab, M. Mazzara, J. Lee, and G. Succi, "Software
architectural patterns in practice: an empirical study," Innovations in
Systems and Software Engineering, vol. 14, no. 4, pp. 263-271, 2018.

[27] C. Pahl, I. Fronza, N. El Ioini, and H. Barzegar, "A Review of
Architectural Principles and Patterns for Distributed Mobile
Information Systems."

PR
E-P

RIN
T

