
Recommendation of technological profiles to collaborate in software
projects using document embeddings

Pablo Chamoso1 • Guillermo Hernández2 • Alfonso González-Briones3 • Francisco J. Garcı́a-Peñalvo4

Received: 17 July 2020 / Accepted: 10 November 2020
� Springer-Verlag London Ltd., part of Springer Nature 2020

Abstract
The information technology sector is continuously growing, and there is a high demand for developers. In the area of

software development projects, fixing bugs or solving issues is a task that could be optimized to improve the productivity of

developers. Making an adequate allocation for bug fixing will save overall project development time. Moreover, the

problem will last for the shortest possible time, minimizing any negative impacts in case the project is already in

production. This research work’s objective is to identify the most apt users (where the term ‘‘user’’ refers to any technology

professional, for example a software developer, who has registered on any given platform), from a set of different user

profiles, for fixing bugs in a software project. The study has been carried out by analyzing large-scale repositories of open-

source projects with a large historical volume of bugs, and the extracted knowledge has been successfully applied to new,

unrelated projects. Different similarity-based profile raking procedures have been studied, including neural-network-based

incidence representation. The obtained results show that the system can be directly applied to different environments and

that the selected user profiles are very close to those selected by human experts, which demonstrates the correct functioning

of the proposed system.

Keywords Text analysis � Artificial Neural Networks � Large-scale repositories � Candidate selection � Software bugs �
Solving software issues

1 Introduction

The most recent advances in computer science have made

it possible to automate a large number of tasks in different

job sectors. The increase in the processing capacity of

computers and the techniques that allow for the execution

of tasks on different machines (distributed computing or

resource virtualization) have, over the last few years,

increased the capacities of methodologies based on Artifi-

cial Intelligence (AI).

One of the job sectors where AI-based methodologies

have much to contribute is precisely the technology sector.

This is a sector with a high employability rate; the high

demand for qualified personnel can be reduced by

improving productivity.

Thus, the focus of the present research work is

improving productivity. At present, one of the main

activities of the technology sector is the production of

software [1]. However, during this process a lot of time is

& Francisco J. Garcı́a-Peñalvo

fgarcia@usal.es

Pablo Chamoso

chamoso@usal.es

Guillermo Hernández

guillehg@air-institute.org

Alfonso González-Briones

alfonsogb@ucm.es

1 BISITE Research Group, University of Salamanca, Calle

Espejo, 24.2, Salamanca, Spain

2 AIR Institute, Paseo de Belén 11, Campus Miguel Delibes,

47011 Valladolid, Spain

3 GRASIA Research Group, Complutense University of

Madrid, 28040 Madrid, Spain

4 GRIAL Research Group. Department of Computer Science

and Automation, Faculty of Science, University of

Salamanca, 37008 Salamanca, Spain

Neural Computing and Applications
https://doi.org/10.1007/s00521-020-05522-1

PO
ST

http://orcid.org/0000-0001-9987-5584
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-020-05522-1&domain=pdf
https://doi.org/10.1007/s00521-020-05522-1

The results indicate that the system is capable of auto-

matically selecting from unlabeled text the user profiles

that are most apt for resolving specific issues in much the

same way as human experts who have participated in the

experiment would.

Besides, the system is easily adaptable and portable to

all types of projects and technical profiles, so applying the

solution on employability portals or portals used as

repositories of open-source projects could provide great

results in the selection of candidates, improving the quality

and agility of employability processes.

The rest of the article is structured in such a way that

Sect. 2 presents a review of background research, as well as

the trends of the technologies applied to the technical

proposal. Later, in Sect. 3, the solution designed to achieve

the research objective is presented. Once the proposal has

been explained, Sect. 4 presents the results obtained.

Finally, in Sect. 5, the obtained conclusions and the future

lines of research are presented.

2 Background

This section presents the background of this research work,

starting by presenting the works related to the analysis of

large-scale repositories that have been presented within the

framework of software development. This is followed by a

study of the AI techniques commonly used in related work,

with a special focus on Artificial Neural Networks (ANNs),

the main methodology selected to carry out this study, and

finally, the section will end with the conclusions drawn

from the analysis of the literature.

2.1 Related research works

Although there is a large amount of research presenting

analyses of software projects from large-scale repositories,

none of them have studied mechanisms for the detection of

the best software developer profiles for incident solution.

Thus, software code repositories have been used to carry

out a review of related studies; their objectives and the

techniques they had employed.

In this regard, the scientific community is using large-

scale repositories with information on software develop-

ment in well-known projects such as Eclipse, Mozilla [6],

Jira [7], OpenOffice or MySQL [8]. The importance of bug

reports is very high in open-source projects, especially if

they are large projects. For this reason, different authors

have been working on unifying the best-known projects

and working with all of them at the same time. As a result,

repositories have been created for carrying out projects that

combine the use of the Eclipse, Mozilla and OpenOffice

often lost on detecting and fixing bugs/issues; a task that is
crucial to the success of the projects [2, 3].

There are different tools such as Jira [4] or GitHub [5]
which have been designed to facilitate this task. They allow
developers to keep track of all the issues that arise in a
software project. In large projects, where teams with
numerous developers are involved, locating and keeping
track of all the issues is a considerable time-saver.

Normally, there are two teams, one in charge of devel-
oping and another in charge of fixing the issues, so main-

taining a bug-free system is not an easy task due to multiple
factors, including the very decision of who should be in
charge of solving an issue.

Hence, the aim of this project is to help reduce the time
involved in keeping software projects free of bugs or issues
by automatically identifying the profile that is the most apt
for fixing a software bug. These candidates can be mem-

bers of the development team or independent developers
looking to work on new challenges or collaborate with the
open-source community.

In this research we have employed large-scale reposi-
tories of open-source projects, where there is a historical
record of all the bugs/issues that have been reported. The
proposal is focused on applying AI mechanisms to extract
all the knowledge that these repositories encapsulate and
thus be able to use it with smaller software projects. This
knowledge will be used to extract the user profiles that are
the best to participate in each project and thus that are
capable of rapidly fixing the bugs or issues that appear in
the project.

Thus, the main contribution of the article lies in the
proposed system; it offers a new functionality for the
automatic selection of the profiles that are most apt for
fixing a specific bug/issue. Moreover, the system offers the
ability to extract specific knowledge (associated with bugs/
issues) from large-scale repositories of open-source pro-
jects. Good performance has been achieved in knowledge
extraction, especially in terms of direct applicability to
smaller projects, even if they are not directly related at the
technological level. This is due to the capacity of
abstraction and knowledge extraction of the proposed
system.

This paper presents a case study where: i) a neural
model based on document embeddings has been obtained
using a collection of large-scale repositories as input
(Eclipse, Mozilla and OpenOffice projects) for the purpose
of encoding software issues; ii) information from users and
public GitHub projects (which have employed well-known
technologies; however, they vary from the technologies in
the projects that have been used to train the model) is
retrieved; and iii) a system that recommends which GitHub
user is the best to solve the issues retrieved in ii) is built
and is evaluated against human recommendations.

PO
ST

repositories, such as those presented in [9] and [10], the

latter being the most recent compilation of issues.

Among recent research, an approach that stands out has

been presented in [11], where AI methodologies have

predicted the appearance of bugs (an algorithm based

mainly on two classifiers) from a set of incidents reported

over the last 14 years in the Jira bug repository.

In [12], a methodology based on N-gram IDF (Inverse

Document Frequency) has been presented for the proper

classification of the received bug reports. In addition,

recent studies have focused on detecting whether or not a

bug has already been reported to avoid duplication and loss

of time on fixing it [13]. Others focused on the severity of

the reported bugs, as is the case of [14], where a study has

been carried out on the results of the best-known machine

learning techniques (Naive Bayes, Multinomial Naive

Bayes, Support Vector Machine, Decision Tree, Random

Forest, Logistic Model Trees, Decision Rules and

K-Nearest Neighbors). Deep Neural Networks (DNNs)

have been used in [15] to calculate the priority of the bug.

Convolutional Neural Networks (CNNs) have also been

used to address the problem of duplicate bug

detection [16].

The most recent approaches try to improve the results

obtained in previous studies through the use of comple-

mentary information, as in the case of [17], which incor-

porates the analysis of comments, or as in [18], where the

developers’ acquaintance with bug fixing is taken into

account, evidencing the importance of properly selecting

the developer for optimal solution of incidences.

However, bugs are just as important as the people who

are able to fix them optimally. For the present work, the

optimal person to solve an incidence will be considered to

be the one whose characteristics are best adapted to the

extracted characteristics associated with the corresponding

project. By selecting the people that are most apt foe the

task, the time it takes to fix the bug is considerably reduced,

as well as the negative impact it may have on the project’s

end users. In addition, the possibility of new, associated

problems emerging is minimized and there is greater con-

fidence in that the bug has been definitively fixed.

In addition to the already mentioned approach presented

by the authors of [18], other approaches analyze the profile

of the users, such as the one presented in [19], which

makes a pre-selection of the most suitable candidates for

job offers from the information available on a social net-

work. The research presented in [20] extracts all the

information related to a person on the Internet and which

can be very useful to have additional information about the

candidates for a job position, beyond what they have

described in their profiles.

2.2 Related tendencies in artificial intelligence

In the area of AI, a large number of researches have

employed AI methodologies to solve problems similar to

those addressed by the current research work.

One of the main trends in AI research is textual analysis,

since in the vast majority of cases the information is not

properly synthesized and labeled and therefore must be

extracted from written texts in a variety of ways (as they

are large-scale repositories). Once the required knowledge

has been extracted from the input texts, it is necessary to

apply methodologies that allow to choose the most apt

users to fix specific bugs in the most optimal way. This

requires a proper analysis of the user profile and the soft-

ware project to determine the similarity between the type

of problem and the profile of the user/software developer.

This section presents a summary of the methodologies that

have been applied to solve similar problems in existing

works.

Firstly, an analysis has been carried out of the

methodologies used in different researches to extract key

knowledge from unlabeled text, for example software

incidences, or the user profiles of candidates for a job.

As indicated previously, ANNs have been used for dif-

ferent purposes in the area of bug analysis (DNNs and

CNNs have been described as examples). However, in the

area of text analysis they are being widely used for many

more purposes. For example, Deep Convolution Neural

Networks (DCNNs) have been employed in sentiment

analysis in [21], Recurrent Networks (RNNs) have been

used in [22] for multilingual text analysis, C-LSTM (CNN

Long Short-Term Memory) Neural Networks for automatic

article tagging in [23] and text classification in [24].

However, the main ANN-based technique being used in

textual analysis is Word2vec (W2V), which was created,

published and patented by Google [25]. W2V encapsulates

different models that are used to produce word embed-

dings. These models are shallow, two-layer neural net-

works that are trained to reconstruct linguistic contexts of

words. The result of applying W2V to a large corpus of text

(in the case of this work, the whole set of events obtained

from a large-scale repository) is a vector space, typically of

several hundred dimensions, with each unique word in the

corpus being assigned a corresponding vector in the space.

Word vectors are positioned in the vector space such that

words that share common contexts in the corpus are located

close to one another in the space [26].

The same idea can be extended to sentences (Sen-

tence2Vec [27]) and complete documents (Doc2vec [28])

where instead of learning feature representations for words,

the system learns it for sentences or documents.

PO
ST

3.1 Methodology

When analyzing large-scale repositories of open-source

projects, it has been decided to start with the set proposed

by [10] which, as already described in Sect. 2.1, presents a

fairly complete and recent collection of issues from the

Eclipse, Mozilla and OpenOffice projects (this dataset has

been described in [10]). This dataset is to be used to create

a system capable of extracting knowledge from software

issues so that it can be reused for any other project.

To demonstrate the generalization capabilities of the

resulting system, open-source projects published on

GitHub will be used (which also has its mechanism for

solving bugs/issues). Likewise, GitHub will be used to

analyze the characteristics of different profiles and deter-

mine the best users to solve those issues. The selected

projects are shown in Table 1.

A group of 10 evaluators (all of them holding a uni-

versity degree in computer science, with at least two years

of work experience) participated in the evaluation of the

results. Each evaluator was given a double-entry table,

matching the GitHub users that they follow (therefore, it is

very likely that the evaluator knows the degree of suit-

ability of each user to collaborate in the indicated projects)

with the fixed set of popular repositories (Table 1). The

evaluators were asked to provide a score of the potential

adequacy of each repository–user pair using a 5-point

Likert scale [32] with the following meaning:

1. Strongly disagree

2. Disagree

3. Neither agree nor disagree

4. Agree

Table 1 Selected GitHub projects

GitHub project Description

numpy/numpy Scientific calculations

tensorflow/tensorflow Machine learning

mongodb/mongo Databases

matplotlib/matplotlib Visualization

pallets/flask Python webserver

symfony/symfony PHP framework

vuejs/vue JS Framework

kubernetes/kubernetes Container manager in Go

angular/angular.js HTML enhanced for web apps

nodejs/node JavaScript runtime

dotnet/aspnetcore Cross-platform .NET framework

mozilla/geckodriver WebDriver for Firefox

eclipse/eclipse eclipse.platform project website

eclipse/mosquitto An open-source MQTT broker

Since its publication, W2V has been widely used and
applied to analyze text with multiple functional approa-
ches. For example, in [29] it has been used to classify
articles and tweets, sentiment analysis has been carried out
in [30] or topic extraction and user classification in [31].
The latter has provided satisfactory results. Although it has
been applied in a completely different context, at a func-
tional level its objective in the application of W2V is
similar to that of the present research.

2.3 Conclusion

The conclusion drawn from the review of background lit-
erature is that there is a large amount of researches on the
analysis of incidence repositories of open-source projects,
but none of them have studied the factors that would have
been relevant for this research, such as the extraction of
knowledge from large repositories and its application in
smaller projects, or the selection of the profile of the most
suitable developer to address a given set of issues.

In this regard, reviewing state-of-the-art literature has
been helpful in selecting the dataset that has been used for
the training of the system, namely, the dataset proposed
in [10]. This knowledge is intended to be applied in smaller
open-source projects published on GitHub. The selected
projects will be related to a variety of technologies.

At a technical level, some AI techniques enable the
study of their results and the section of the one that renders
the best results. However, these methodologies are not
applicable ‘as is’ and specific adaptations must be made to
this case study.

Therefore, it is necessary to propose a novel method-

ology with a scheme adapted to the needs of the proposed
functionality, although existing text analysis techniques
can be applied since, according to the literature, they
provide excellent results.

3 Proposed system

The previous section has justified the main objective of this
research and reviewed current trends in the analysis of
open-source repositories of projects and in the use of AI
methodologies such as ANNs. The technical details of the
proposed solution are described in this section. However, it
is necessary to first describe the methodology that has been
followed.

Below, the methodology and subsequently the technical
solution are described in detail.

PO
ST

5. Strongly agree

The evaluators have also been asked to skip the evaluations

they were unsure of, to avoid the central tendency bias.

Despite certain subjectivity inherent to the human

component, these evaluations will serve as a reference

when evaluating the accuracy of the recommendations

made by the system.

The system’s recommendations will consist in indicat-

ing the most suitable GitHub user (from the set of users

analyzed by the evaluators) to solve the bugs/issues that

arise in each of the projects selected to test the system.

Once a summary of the methodology has been pre-

sented, the following subsection proceeds to detail the

technical approach of the proposed solution.

3.2 Technical approach

The process of user–repository similarity measurement is

depicted in Fig. 1. A repository consists of both structured

information, such as programming languages or its topics

described as keywords, as well as textual information, such

as the bugs or the descriptions. This information is recov-

ered using a scrapper based on the GitHub API1. The same

process is carried out for the users, whose information is

extracted using the same approach.

Using the whole set of descriptions extracted from the

incidences of the repositories presented in Sect. 3.1 [10], a

Doc2vec model [33, 34] was trained to produce 100-di-

mensional vectors considering a 10-word distance, using a

tokenized, lower-case version of the documents as the

training set. The same preprocessing has been applied to

the input whenever this vectorizer is used.

Initially, evidence for the usefulness of the constructed

embedding in the representation of the textual content of

the bugs can be found by making a reduced-dimensionality

plot of the vectors associated with those bugs. A t-

target
repo

Structured data Open issues

Candidate

Owned reposIssues

Vector-encoded open
issues

Vector-encoded
issues

Similarity metrics

Overall similarity
score

Large
training
corpus

Fig. 1 Workflow of user–repository similarity calculation

1 GitHub API - https://developer.github.com/v3/ (Accessed July 14,

2020).

PO
ST

https://developer.github.com/v3/

distributed Stochastic Neighbor Embedding (t-SNE) [35]

of the incidences of the repositories in Table 1 is shown in

Fig. 2.

The similarity of the structured information can be

measured using well-known metrics. Since a set of attri-

butes is being considered, a neutral choice is the Jaccard

similarity coefficient

JðA;BÞ ¼ jA \ Bj
jA [Bj ; ð1Þ

where A, B are the sets of tags being compared.

In the case of textual information, the Doc2vec model

presented in Sect. 3.1 is used to obtain a vectorial repre-

sentation. The overall bug similarity can then be extracted

taking the cosine similarity of the aggregated vectors,

defined by

sðA;BÞ ¼

P

i

P
j A

j
i

� � P
k B

k
i

� �

ffi
P

i

P
j A

j
i

� �2
s ffiP

i

P
k B

k
i

� �2
r ; ð2Þ

where Aj
i (B

j
i) is the i-th component of the vector repre-

senting the j-th (k-th) incidence of the repository A (B).

Once these user–repository similarities are calculated,

they can be used to define a raking matching each of the

users to an ordered list of repositories that the system has

estimated will be most relevant to them.

Finally, the Kendall rank correlation coefficient is used

to provide a quantitative measure of the agreement of the

rank made by the human evaluators and the rank obtained

from the designed algorithm. The so-called s-b version,

which accounts for ties, is used as defined in [36], i.e.,

s ¼ P� Q
ffi
ðPþ Qþ T1Þ � ðPþ Qþ T2Þ

p ; ð3Þ

repositories for which a non-null evaluation was provided.

The results are shown in Fig. 4 using a box plot that

summarizes the distribution of such a coefficient for each

−4 −2 0 2 4 6

−6

−4

−2

0

2

4

numpy/numpy
mongodb/mongo
pallets/flask
vuejs/vue
angular/angular.js
dotnet/aspnetcore
eclipse/eclipse

Fig. 2 Scatter plot of a t-distributed Stochastic Neighbor Embedding

of some of the open issues for repositories in Table 1. The number of

repositories has been reduced on the plot for the sake of clarity

1 2 3 4 5

Score

0

20

40

60

80

100

A
m
ou

nt
of

ev
al
ua

ti
on

s

Fig. 3 Distribution of the scores provided by the evaluators to the

repository–profile pairs

topic languages issues total

Similarity component

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

K
en
da

ll
τ

Mean human correlation

Fig. 4 Evaluation results in terms of the distribution of the Kendall

rank correlation coefficient. Each of the components (x-axis) is shown

as a box plot where the whiskers delimit 1.5 times the inter-quartile

range. For the sake of comparison, the mean human-to-human

correlation coefficient is also shown as the horizontal line, surrounded

by a shaded region defined by the standard error of the mean

where P is the number of concordant pairs, Q is the number
of discordant pairs and T1 and T2 are the numbers of ties in
each of the compared rankings but not in the other one.

4 Results

A total of 38 distinct profiles were evaluated, collecting a
total amount of 522 repository–profile evaluations. (Empty
valuations have not been taken into account.) The distri-
bution of the scores provided by the evaluators is shown in
Fig. 3. As the figure shows, the data follow a typical flat
bell-shaped curve.

All of these profiles were evaluated concerning each of
the repositories in Table 1 using the available information
and then compared to the human evaluations using the
Kendall rank correlation coefficient over the subset of

PO
ST

of the components considered. The first two components

(‘‘topics’’ and ‘‘languages’’) are structural data, therefore

the Jaccard coefficient (1) is used to build the ranking. The

similarity of the third component (‘‘issues’’), is measured

using (2), since it is a set of textual data. Finally, the

‘‘total’’ provides a similarity aggregation of the previous

components with uniform weight.

When interpreting the results in Fig. 4, it should be

noted that this metric is limited by human subjectivity that

occurs when performing the evaluation. To have a quan-

titative measure of this component, the instances of the

same profiles studied by more than one evaluator have been

compared, thus obtaining a distribution of coefficients that

indicate their level of agreement. Figure 4 includes as a

reference the average value of such a distribution, as well

as its standard error, represented by the shaded region.

The fact that the distribution of the Kendall coefficient is

mainly located above zero, with values similar to those

corresponding to the deviation detected for the human

factor, shows that the behavior of the system is similar to

that of the humans, and not a random permutation. Among

the studied components, the one that has had the best

performance has been the one extracted from the similarity

of the issues. This may be because the languages and topics

recorded in the repositories include less relevant compo-

nents, but when taken into account in the similarity mea-

sures they introduce noise in them.

5 Conclusions and future work

The first conclusion that can be drawn from this research is

that the use of this type of tool offers an advantage in the

development of the software, since the automatic selection

of the most suitable profile allows to fix the bug faster than

if a manual pre-selection had to be carried out. Therefore,

the use of this type of methodology is recommendable.

The system is easily adaptable and portable to all kinds

of projects, regardless of the technologies used (knowledge

has been extracted from 3 large-scale repositories and that

knowledge has been tested with 14 GitHub projects using

well-differentiated technologies) and technical profiles.

This characteristic, together with the demonstration that the

proposed methodology is capable of producing good

results, can be considered as the main contribution of the

research. This makes the designed solution usable on

employability portals specialized in technology profile

selection, analyzing on the one hand unlabeled job offers

and on the other hand unlabeled user profiles. Similarly, it

could be applicable to portals that facilitate the deployment

of open-source software projects, as it could provide great

results in the search for collaborators. Therefore, it can be

said that the proposed system applied in environments such

as those described, will improve the quality and agility of

employability processes.

At a technical level, the approach of the proposed

methodology is novel and has allowed to extract knowl-

edge from large-scale repositories associated with three

open-source software projects and to apply it efficiently in

non-technically related projects, which validates that the

proposed technical solution is applicable in multiple

environments.

As explained before, the proposed methodology can be

adapted to employability portals specialized in the search

of technological profiles to participate in software projects,

both initiated and non-initiated. The main drawback is that

the information needed to make a system robust enough is

owned by such portals and no repository with these char-

acteristics has been found. Therefore, work is being done to

find portals that have the characteristics to be able to carry

out a new study based on this methodology, but with this

new functionality.

At the technical level, research is being done on a

supervised classifier that will operate more intelligently

with similarity measurements to try to more accurately

reproduce the human scale.

Acknowledgements The authors would like to express their gratitude

to the profile evaluators.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of

interest.

References

1. Biswas UN, Allard K, Pousette A, Härenstam A (2017) The

information technology sector. In: Biswas UN, Allard K, Pousette

A, Härenstam A (eds) Understanding attractive work in a glob-

alized world. Springer, Berlin, pp 151–174

2. Chen TH, Thomas SW, Hemmati H, Nagappan M, Hassan AE

(2017) An empirical study on the effect of testing on code quality

using topic models: a case study on software development sys-

tems. IEEE Trans Reliab 66(3):806

3. Mohagheghi P, Jørgensen M (2017) What contributes to the

success of IT projects? an empirical study of IT projects in the

Norwegian public sector. JSW 12(9):751

4. Fisher J, Koning D, Ludwigsen A, et al. (2013) Utilizing Atlas-

sian JIRA for large-scale software development management. In:

14th International conference on accelerator & large experi-

mental physics control systems (ICALEPCS)

5. GitHub Inc., GitHub (2007) https://github.com/. Accessed 14 Jul

2020

6. Lamkanfi A, Pérez J, Demeyer S (2013) The eclipse and mozilla

defect tracking dataset: a genuine dataset for mining bug infor-

mation. In: 2013 10th working conference on mining software

repositories (MSR) (IEEE), pp. 203–206

7. Ortu M, Destefanis G, Adams B, Murgia A, Marchesi M, Tonelli

R (2015) The JIRA repository dataset: Understanding social

PO
ST

https://github.com/

aspects of software development. In: Proceedings of the 11th

international conference on predictive models and data analytics

in software engineering , pp. 1–4

8. Lu S, Park S, Seo E, Zhou Y (2008) Learning from mistakes: a

comprehensive study on real world concurrency bug character-

istics. In: Proceedings of the 13th international conference on

architectural support for programming languages and operating

systems, pp. 329–339

9. Sun C, Lo D, Khoo SC, Jiang J (2011) Towards more accurate

retrieval of duplicate bug reports. In: 2011 26th IEEE/ACM

International conference on automated software engineering

(ASE 2011) (IEEE), pp. 253–262

10. Lazar A, Ritchey S, Sharif B (2014) Generating duplicate bug

datasets. In: Proceedings of the 11th working conference on

mining software repositories , pp. 392–395

11. Zhang W, Challis C (2019) Software component prediction for

bug reports. In: Asian conference on machine learning ,

pp. 806–821

12. Terdchanakul P, Hata H, Phannachitta P, Matsumoto K (2017)

Bug or not? Bug report classification using n-gram idf. In: 2017

IEEE International conference on software maintenance and

evolution (ICSME) (IEEE), pp. 534–538

13. Saad A, Saad M, Emaduddin SM, Ullah R (2019) Optimization of

bug reporting system (BRS): artificial intelligence based method

to handle duplicate bug report. In: International conference on

intelligent technologies and applications. Springer, pp. 118–128

14. Baarah A, Aloqaily A, Salah Z, Zamzeer M, Sallam M (2019)

Machine learning approaches for predicting the severity level of

software bug reports in closed source projects. Mach Learn.

https://doi.org/10.14569/IJACSA.2019.0100836

15. Zhang W, Challis C (2019) Automatic bug priority prediction

using DNN based regression. In: The international conference on

natural computation, fuzzy systems and knowledge discovery

(Springer), pp. 333–340

16. Xie Q, Wen Z, Zhu J, Gao C, Zheng Z (2018) Detecting duplicate

bug reports with convolutional neural networks. In: 2018 25th

Asia-pacific software engineering conference (APSEC) (IEEE),

pp. 416–425

17. Kaur A, Goyal S (2020) Comments-based analysis of a bug report

collection system and its applications. from data gathering to data

comprehension, intelligent data analysis

18. Wang C, Li Y, Chen L, Huang W, Zhou Y, Xu B (2020)

Examining the effects of developer familiarity on bug fixing.

J Syst Softw 169:110667

19. Chamoso P, Rivas A, Rodrı́guez S, Bajo J (2018) Relationship

recommender system in a business and employment-oriented

social network. Inf Sci 433:204

20. Chamoso P, Bartolomé Á, Garcı́a-Retuerta D, Prieto J, De La

Prieta F (2020) Profile generation system using artificial intelli-

gence for information recovery and analysis. J Ambient Intell

Humanized Comput 11:1–10

21. Chachra A, Mehndiratta P, Gupta M (2017) Sentiment analysis of

text using deep convolution neural networks. In: 2017 Tenth

international conference on contemporary computing (IC3),

pp. 1–6

22. Zennaki O, Semmar N, Besacier L (2016) Inducing multilingual

text analysis tools using bidirectional recurrent neural networks,

arXiv preprint arXiv:1609.09382

23. Mukalov P, Zelinskyi O, Levkovych R, Tarnavskyi P, Pylyp A,

Shakhovska N (2019) Development of system for auto-tagging

articles, based on neural network. In: DCOLINS , pp. 106–115

24. Zhou C, Sun C, Liu Z, Lau F (2015) A C-LSTM neural network

for text classification, arXiv preprint arXiv:1511.08630

25. Mikolov T, Chen K, Corrado GS, Dean JA (2015) Computing

numeric representations of words in a high-dimensional space,

Computing numeric representations of words in a high-dimen-

sional space . US Patent 9,037,464

26. Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient esti-

mation of word representations in vector space, arXiv preprint

arXiv:1301.3781

27. Jebari C, Cobo MJ, Herrera-Viedma E (2018) A new approach

for implicit citation extraction. In: International conference on

intelligent data engineering and automated learning (Springer),

pp. 121–129

28. Lau JH, Baldwin T (2016) An empirical evaluation of doc2vec

with practical insights into document embedding generation,

arXiv preprint arXiv:1607.05368

29. Jang B, Kim I, Kim JW (2019) Word2vec convolutional neural

networks for classification of news articles and tweets. PLoS

ONE 14(8):e0220976

30. Acosta J, Lamaute N, Luo M, Finkelstein E, Andreea C (2017)

Sentiment analysis of twitter messages using word2vec. In:

Proceedings of student-faculty research day, CSIS, Pace

University 7
31. Vargas-Calderón V, Camargo JE (2019) Characterization of cit-

izens using word2vec and latent topic analysis in a large set of

tweets. Cities 92:187

32. Joshi A, Kale S, Chandel S, Pal DK (2015) Likert scale: explored

and explained. Current J Appl Sci Technol 7(4):396–403

33. Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013)

Distributed representations of words and phrases and their com-

positionality. In: Advances in neural information processing

systems , pp. 3111–3119

34. Řehůřek R, Sojka P (2010) Software framework for topic

modelling with large corpora. In: Proceedings of the LREC 2010

workshop on new challenges for NLP frameworks (ELRA, Val-

letta, Malta), pp. 45–50. http://is.muni.cz/publication/884893/en

35. Lvd Maaten, Hinton G (2008) Visualizing data using t-SNE.

J Mach Learn Res 9:2579

36. Kendall MG (1945) The treatment of ties in ranking problems.

Biometrika 33(3):239–251

PO
ST

https://doi.org/10.14569/IJACSA.2019.0100836
http://arxiv.org/abs/1609.09382
http://arxiv.org/abs/1511.08630
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1607.05368
http://is.muni.cz/publication/884893/en

	Recommendation of technological profiles to collaborate in software projects using document embeddings
	Abstract
	Introduction
	Background
	Related research works
	Related tendencies in artificial intelligence
	Conclusion

	Proposed system
	Methodology
	Technical approach

	Results
	Conclusions and future work
	Acknowledgements
	References

