

Analyzing non-linear video usage in an introductory x-MOOC about basic linear algebra

J. Triay¹, J. Minguillón¹, T. Sancho-Vinuesa¹, V. Daza²

¹Universitat Oberta de Catalunya, Barcelona, Spain ²Universitat Pompeu Fabra, Barcelona, Spain

MOOCs

- First MOOC in 2008
- 2011 Sebastian Thrun, Peter Norvig, Artificial Intelligence, 160.000 paticipants.
- Very popular in 2012
- Huge MOOC platforms
 - edX
 - MiriadaX
- From individual experiences to institutional
 - Future Learn
 - UCATx (Based on Open edX)

"Decoding Algebra" course

- Introductory course for university students.
- 5 weeks, one module / week, 3-5 hours / week
- Two kind of resources:
 - 97 videos ranging from 5' to 18'.
 - Main resource.
 - Theory, exercises, challenges.
 - Quizzes with 8 or 10 questions.
 - Three attempts.
 - Best attempt.

Motivation

- Exploratory analysis.
 - Video consumption.
 - Hot spot and bottlenecks detection.
 - Correct storyboard.
 - Number of videos.
- Build a set of tools for analyzing UCATx courses.

Data gathering and preprocessing

- 194 course participants
- Around 450.000 events in six weeks
 - EdX tracking logs format. (.JSON)
 - Video events: play_video, <u>seek_video</u>.
 - <u>Seek_video</u>, jump during the reproduction.
 - Python scripts.
 - One file with all video jumps: ID, start time, final time.

Data analysis (I)

- Heatmaps D3.js
 - Visualize the previous .csv file with all jumps.
 - Blue color gradient, forward jumps.
 - Red color gradient, backward jumps.
 - Darker color, more jumps; white color, no jumps.
 - Y-axis, where participants begin the jump.
 - X-axis, where participants finish the jump.

Data analysis (II)

- One second resolution
 - Square matrix
 - Each cell represents a second where the participant begins the movement of the play bar and the second where finishes the movement.
 - Number of cells, equal to the square of the video length in seconds.
- Different problems for long videos:
 - Lot of time to render.
 - Most of heatmap is white.

Data analysis (III)

• One second resolution image.

Data analysis (VI)

- We build different heatmaps with different cell resolution 2-20 seconds.
 - Different problems.
 - 1-10 seconds resolution:
 - Long videos, same as the 1 resolution.
 - 11-20 seconds resolution:
 - Short videos, cause distortion.
 - Jumps are very close, in the same cells.

Data analysis (V)

- We developed heatmaps depending on the internal structure (storyboard).
- Analyse the internal structure of the video
 - Different scenes.
- Now each cell represent a scene.
- It remains being a square matrix.
- Cell size is scaled according scene duration.
- Normalization applied.
- Solved previous problems of data sparseness, renderization time and close jumps.

Results (I)

Backward jumps heatmap.

Results (II)

• Forward jumps heatmap.

Conclusions and future research

- Heatmaps based on storyboard can be used to detect problematic scenes.
- Heatmaps show that majority of participants jumps within the same scene and follow the linearity of time.
- Can be used to analyze bottlenecks and hot spots.
- Automatic storyboard extraction.
- Improve boudaries between consecutive scenes

Thank you!

jtriaypa[at]uoc[dot]edu @jtriayp

